Function reference
-
torch_empty()
- Empty
-
torch_arange()
- Arange
-
torch_eye()
- Eye
-
torch_full()
- Full
-
torch_linspace()
- Linspace
-
torch_logspace()
- Logspace
-
torch_ones()
- Ones
-
torch_rand()
- Rand
-
torch_randint()
- Randint
-
torch_randn()
- Randn
-
torch_randperm()
- Randperm
-
torch_zeros()
- Zeros
-
torch_empty_like()
- Empty_like
-
torch_full_like()
- Full_like
-
torch_ones_like()
- Ones_like
-
torch_rand_like()
- Rand_like
-
torch_randint_like()
- Randint_like
-
torch_randn_like()
- Randn_like
-
torch_zeros_like()
- Zeros_like
-
as_array()
- Converts to array
-
torch_tensor_from_buffer()
buffer_from_torch_tensor()
- Creates a tensor from a buffer of memory
-
torch_set_default_dtype()
torch_get_default_dtype()
- Gets and sets the default floating point dtype.
-
is_torch_device()
- Checks if object is a device
-
is_torch_dtype()
- Check if object is a torch data type
-
torch_float32()
torch_float()
torch_float64()
torch_double()
torch_cfloat32()
torch_chalf()
torch_cfloat()
torch_cfloat64()
torch_cdouble()
torch_cfloat128()
torch_float16()
torch_half()
torch_uint8()
torch_int8()
torch_int16()
torch_short()
torch_int32()
torch_int()
torch_int64()
torch_long()
torch_bool()
torch_quint8()
torch_qint8()
torch_qint32()
- Torch data types
-
torch_finfo()
- Floating point type info
-
torch_iinfo()
- Integer type info
-
torch_per_channel_affine()
torch_per_tensor_affine()
torch_per_channel_symmetric()
torch_per_tensor_symmetric()
- Creates the corresponding Scheme object
-
torch_reduction_sum()
torch_reduction_mean()
torch_reduction_none()
- Creates the reduction objet
-
is_torch_layout()
- Check if an object is a torch layout.
-
is_torch_memory_format()
- Check if an object is a memory format
-
is_torch_qscheme()
- Checks if an object is a QScheme
-
is_undefined_tensor()
- Checks if a tensor is undefined
-
load_state_dict()
- Load a state dict file
-
torch_load()
- Loads a saved object
-
torch_save()
- Saves an object to a disk file.
-
torch_serialize()
- Serialize a torch object returning a raw object
-
clone_module()
- Clone a torch module.
-
torch_set_num_threads()
torch_set_num_interop_threads()
torch_get_num_interop_threads()
torch_get_num_threads()
- Number of threads
-
torch_abs()
- Abs
-
torch_absolute()
- Absolute
-
torch_acos()
- Acos
-
torch_acosh()
- Acosh
-
torch_adaptive_avg_pool1d()
- Adaptive_avg_pool1d
-
torch_add()
- Add
-
torch_addbmm()
- Addbmm
-
torch_addcdiv()
- Addcdiv
-
torch_addcmul()
- Addcmul
-
torch_addmm()
- Addmm
-
torch_addmv()
- Addmv
-
torch_addr()
- Addr
-
torch_allclose()
- Allclose
-
torch_amax()
- Amax
-
torch_amin()
- Amin
-
torch_angle()
- Angle
-
torch_arccos()
- Arccos
-
torch_arccosh()
- Arccosh
-
torch_arcsin()
- Arcsin
-
torch_arcsinh()
- Arcsinh
-
torch_arctan()
- Arctan
-
torch_arctanh()
- Arctanh
-
torch_argmax
- Argmax
-
torch_argmin
- Argmin
-
torch_argsort()
- Argsort
-
torch_as_strided()
- As_strided
-
torch_asin()
- Asin
-
torch_asinh()
- Asinh
-
torch_atan()
- Atan
-
torch_atan2()
- Atan2
-
torch_atanh()
- Atanh
-
torch_atleast_1d()
- Atleast_1d
-
torch_atleast_2d()
- Atleast_2d
-
torch_atleast_3d()
- Atleast_3d
-
torch_avg_pool1d()
- Avg_pool1d
-
torch_baddbmm()
- Baddbmm
-
torch_bartlett_window()
- Bartlett_window
-
torch_bernoulli()
- Bernoulli
-
torch_bincount
- Bincount
-
torch_bitwise_and()
- Bitwise_and
-
torch_bitwise_not()
- Bitwise_not
-
torch_bitwise_or()
- Bitwise_or
-
torch_bitwise_xor()
- Bitwise_xor
-
torch_blackman_window()
- Blackman_window
-
torch_block_diag()
- Block_diag
-
torch_bmm()
- Bmm
-
torch_broadcast_tensors()
- Broadcast_tensors
-
torch_bucketize()
- Bucketize
-
torch_can_cast()
- Can_cast
-
torch_cartesian_prod()
- Cartesian_prod
-
torch_cat()
- Cat
-
torch_cdist()
- Cdist
-
torch_ceil()
- Ceil
-
torch_celu()
- Celu
-
torch_celu_()
- Celu_
-
torch_chain_matmul()
- Chain_matmul
-
torch_channel_shuffle()
- Channel_shuffle
-
torch_cholesky()
- Cholesky
-
torch_cholesky_inverse()
- Cholesky_inverse
-
torch_cholesky_solve()
- Cholesky_solve
-
torch_chunk()
- Chunk
-
torch_clamp()
- Clamp
-
torch_clip()
- Clip
-
torch_clone()
- Clone
-
torch_combinations()
- Combinations
-
torch_complex()
- Complex
-
torch_conj()
- Conj
-
torch_conv1d()
- Conv1d
-
torch_conv2d()
- Conv2d
-
torch_conv3d()
- Conv3d
-
torch_conv_tbc()
- Conv_tbc
-
torch_conv_transpose1d()
- Conv_transpose1d
-
torch_conv_transpose2d()
- Conv_transpose2d
-
torch_conv_transpose3d()
- Conv_transpose3d
-
torch_cos()
- Cos
-
torch_cosh()
- Cosh
-
torch_cosine_similarity()
- Cosine_similarity
-
torch_count_nonzero()
- Count_nonzero
-
torch_cross()
- Cross
-
torch_cummax()
- Cummax
-
torch_cummin()
- Cummin
-
torch_cumprod()
- Cumprod
-
torch_cumsum()
- Cumsum
-
torch_deg2rad()
- Deg2rad
-
torch_dequantize()
- Dequantize
-
torch_det()
- Det
-
torch_device()
- Create a Device object
-
torch_diag()
- Diag
-
torch_diag_embed()
- Diag_embed
-
torch_diagflat()
- Diagflat
-
torch_diagonal()
- Diagonal
-
torch_diff()
- Computes the n-th forward difference along the given dimension.
-
torch_digamma()
- Digamma
-
torch_dist()
- Dist
-
torch_div()
- Div
-
torch_divide()
- Divide
-
torch_dot()
- Dot
-
torch_dstack()
- Dstack
-
torch_eig
- Eig
-
torch_einsum()
- Einsum
-
torch_empty_strided()
- Empty_strided
-
torch_eq()
- Eq
-
torch_equal()
- Equal
-
torch_erf()
- Erf
-
torch_erfc()
- Erfc
-
torch_erfinv()
- Erfinv
-
torch_exp()
- Exp
-
torch_exp2()
- Exp2
-
torch_expm1()
- Expm1
-
torch_fft_fft()
- Fft
-
torch_fft_fftfreq()
- fftfreq
-
torch_fft_ifft()
- Ifft
-
torch_fft_irfft()
- Irfft
-
torch_fft_rfft()
- Rfft
-
torch_fix()
- Fix
-
torch_flatten()
- Flatten
-
torch_flip()
- Flip
-
torch_fliplr()
- Fliplr
-
torch_flipud()
- Flipud
-
torch_floor()
- Floor
-
torch_floor_divide()
- Floor_divide
-
torch_fmod()
- Fmod
-
torch_frac()
- Frac
-
torch_gather()
- Gather
-
torch_gcd()
- Gcd
-
torch_ge()
- Ge
-
torch_generator()
- Create a Generator object
-
torch_geqrf()
- Geqrf
-
torch_ger()
- Ger
-
torch_get_rng_state()
torch_set_rng_state()
cuda_get_rng_state()
cuda_set_rng_state()
- RNG state management
-
torch_greater()
- Greater
-
torch_greater_equal()
- Greater_equal
-
torch_gt()
- Gt
-
torch_hamming_window()
- Hamming_window
-
torch_hann_window()
- Hann_window
-
torch_heaviside()
- Heaviside
-
torch_histc()
- Histc
-
torch_hstack()
- Hstack
-
torch_hypot()
- Hypot
-
torch_i0()
- I0
-
torch_imag()
- Imag
-
torch_index()
- Index torch tensors
-
torch_index_put()
- Modify values selected by
indices
.
-
torch_index_put_()
- In-place version of
torch_index_put
.
-
torch_index_select()
- Index_select
-
torch_install_path()
- A simple exported version of install_path Returns the torch installation path.
-
torch_inverse()
- Inverse
-
torch_is_complex()
- Is_complex
-
torch_is_floating_point()
- Is_floating_point
-
torch_is_installed()
- Verifies if torch is installed
-
torch_is_nonzero()
- Is_nonzero
-
torch_isclose()
- Isclose
-
torch_isfinite()
- Isfinite
-
torch_isinf()
- Isinf
-
torch_isnan()
- Isnan
-
torch_isneginf()
- Isneginf
-
torch_isposinf()
- Isposinf
-
torch_isreal()
- Isreal
-
torch_istft()
- Istft
-
torch_kaiser_window()
- Kaiser_window
-
torch_kron()
- Kronecker product
-
torch_kthvalue()
- Kthvalue
-
torch_strided()
torch_sparse_coo()
- Creates the corresponding layout
-
torch_lcm()
- Lcm
-
torch_le()
- Le
-
torch_lerp()
- Lerp
-
torch_less()
- Less
-
torch_less_equal()
- Less_equal
-
torch_lgamma()
- Lgamma
-
torch_log()
- Log
-
torch_log10()
- Log10
-
torch_log1p()
- Log1p
-
torch_log2()
- Log2
-
torch_logaddexp()
- Logaddexp
-
torch_logaddexp2()
- Logaddexp2
-
torch_logcumsumexp()
- Logcumsumexp
-
torch_logdet()
- Logdet
-
torch_logical_and()
- Logical_and
-
torch_logical_not
- Logical_not
-
torch_logical_or()
- Logical_or
-
torch_logical_xor()
- Logical_xor
-
torch_logit()
- Logit
-
torch_logsumexp()
- Logsumexp
-
torch_lstsq
- Lstsq
-
torch_lt()
- Lt
-
torch_lu()
- LU
-
torch_lu_solve()
- Lu_solve
-
torch_lu_unpack()
- Lu_unpack
-
torch_manual_seed()
local_torch_manual_seed()
with_torch_manual_seed()
- Sets the seed for generating random numbers.
-
torch_masked_select()
- Masked_select
-
torch_matmul()
- Matmul
-
torch_matrix_exp()
- Matrix_exp
-
torch_matrix_power()
- Matrix_power
-
torch_matrix_rank
- Matrix_rank
-
torch_max
- Max
-
torch_maximum()
- Maximum
-
torch_mean()
- Mean
-
torch_median()
- Median
-
torch_meshgrid()
- Meshgrid
-
torch_min
- Min
-
torch_minimum()
- Minimum
-
torch_mm()
- Mm
-
torch_mode()
- Mode
-
torch_movedim()
- Movedim
-
torch_mul()
- Mul
-
torch_multinomial()
- Multinomial
-
torch_multiply()
- Multiply
-
torch_mv()
- Mv
-
torch_mvlgamma()
- Mvlgamma
-
torch_nanquantile()
- Nanquantile
-
torch_nansum()
- Nansum
-
torch_narrow()
- Narrow
-
torch_ne()
- Ne
-
torch_neg()
- Neg
-
torch_negative()
- Negative
-
torch_nextafter()
- Nextafter
-
torch_nonzero()
- Nonzero
-
torch_norm()
- Norm
-
torch_normal()
- Normal
-
torch_not_equal()
- Not_equal
-
torch_orgqr()
- Orgqr
-
torch_ormqr()
- Ormqr
-
torch_outer()
- Outer
-
torch_pdist()
- Pdist
-
torch_pinverse()
- Pinverse
-
torch_pixel_shuffle()
- Pixel_shuffle
-
torch_poisson()
- Poisson
-
torch_polar()
- Polar
-
torch_polygamma()
- Polygamma
-
torch_pow()
- Pow
-
torch_prod()
- Prod
-
torch_promote_types()
- Promote_types
-
torch_qr()
- Qr
-
torch_quantile()
- Quantile
-
torch_quantize_per_channel()
- Quantize_per_channel
-
torch_quantize_per_tensor()
- Quantize_per_tensor
-
torch_rad2deg()
- Rad2deg
-
torch_range()
- Range
-
torch_real()
- Real
-
torch_reciprocal()
- Reciprocal
-
torch_relu()
- Relu
-
torch_relu_()
- Relu_
-
torch_remainder()
- Remainder
-
torch_renorm()
- Renorm
-
torch_repeat_interleave()
- Repeat_interleave
-
torch_reshape()
- Reshape
-
torch_result_type()
- Result_type
-
torch_roll()
- Roll
-
torch_rot90()
- Rot90
-
torch_round()
- Round
-
torch_rrelu_()
- Rrelu_
-
torch_rsqrt()
- Rsqrt
-
torch_scalar_tensor()
- Scalar tensor
-
torch_searchsorted()
- Searchsorted
-
torch_selu()
- Selu
-
torch_selu_()
- Selu_
-
torch_sgn()
- Sgn
-
torch_sigmoid()
- Sigmoid
-
torch_sign()
- Sign
-
torch_signbit()
- Signbit
-
torch_sin()
- Sin
-
torch_sinh()
- Sinh
-
torch_slogdet()
- Slogdet
-
torch_sort
- Sort
-
torch_sparse_coo_tensor()
- Sparse_coo_tensor
-
torch_split()
- Split
-
torch_sqrt()
- Sqrt
-
torch_square()
- Square
-
torch_squeeze()
- Squeeze
-
torch_stack()
- Stack
-
torch_std()
- Std
-
torch_std_mean()
- Std_mean
-
torch_stft()
- Stft
-
torch_sub()
- Sub
-
torch_subtract()
- Subtract
-
torch_sum()
- Sum
-
torch_svd()
- Svd
-
torch_take()
- Take
-
torch_tan()
- Tan
-
torch_tanh()
- Tanh
-
torch_tensor()
- Converts R objects to a torch tensor
-
torch_tensor_from_buffer()
buffer_from_torch_tensor()
- Creates a tensor from a buffer of memory
-
torch_tensordot()
- Tensordot
-
torch_threshold_()
- Threshold_
-
torch_topk()
- Topk
-
torch_trace()
- Trace
-
torch_transpose()
- Transpose
-
torch_trapz()
- Trapz
-
torch_triangular_solve()
- Triangular_solve
-
torch_tril()
- Tril
-
torch_tril_indices()
- Tril_indices
-
torch_triu()
- Triu
-
torch_triu_indices()
- Triu_indices
-
torch_true_divide()
- TRUE_divide
-
torch_trunc()
- Trunc
-
torch_unbind()
- Unbind
-
torch_unique_consecutive()
- Unique_consecutive
-
torch_unsafe_chunk()
- Unsafe_chunk
-
torch_unsafe_split()
- Unsafe_split
-
torch_unsqueeze()
- Unsqueeze
-
torch_vander()
- Vander
-
torch_var()
- Var
-
torch_var_mean()
- Var_mean
-
torch_vdot()
- Vdot
-
torch_view_as_complex()
- View_as_complex
-
torch_view_as_real()
- View_as_real
-
torch_vstack()
- Vstack
-
torch_where()
- Where
-
broadcast_all()
- Given a list of values (possibly containing numbers), returns a list where each value is broadcasted based on the following rules:
-
nn_adaptive_avg_pool1d()
- Applies a 1D adaptive average pooling over an input signal composed of several input planes.
-
nn_adaptive_avg_pool2d()
- Applies a 2D adaptive average pooling over an input signal composed of several input planes.
-
nn_adaptive_avg_pool3d()
- Applies a 3D adaptive average pooling over an input signal composed of several input planes.
-
nn_adaptive_log_softmax_with_loss()
- AdaptiveLogSoftmaxWithLoss module
-
nn_adaptive_max_pool1d()
- Applies a 1D adaptive max pooling over an input signal composed of several input planes.
-
nn_adaptive_max_pool2d()
- Applies a 2D adaptive max pooling over an input signal composed of several input planes.
-
nn_adaptive_max_pool3d()
- Applies a 3D adaptive max pooling over an input signal composed of several input planes.
-
nn_avg_pool1d()
- Applies a 1D average pooling over an input signal composed of several input planes.
-
nn_avg_pool2d()
- Applies a 2D average pooling over an input signal composed of several input planes.
-
nn_avg_pool3d()
- Applies a 3D average pooling over an input signal composed of several input planes.
-
nn_batch_norm1d()
- BatchNorm1D module
-
nn_batch_norm2d()
- BatchNorm2D
-
nn_batch_norm3d()
- BatchNorm3D
-
nn_bce_loss()
- Binary cross entropy loss
-
nn_bce_with_logits_loss()
- BCE with logits loss
-
nn_bilinear()
- Bilinear module
-
nn_buffer()
- Creates a nn_buffer
-
nn_celu()
- CELU module
-
nn_contrib_sparsemax()
- Sparsemax activation
-
nn_conv1d()
- Conv1D module
-
nn_conv2d()
- Conv2D module
-
nn_conv3d()
- Conv3D module
-
nn_conv_transpose1d()
- ConvTranspose1D
-
nn_conv_transpose2d()
- ConvTranpose2D module
-
nn_conv_transpose3d()
- ConvTranpose3D module
-
nn_cosine_embedding_loss()
- Cosine embedding loss
-
nn_cross_entropy_loss()
- CrossEntropyLoss module
-
nn_ctc_loss()
- The Connectionist Temporal Classification loss.
-
nn_dropout()
- Dropout module
-
nn_dropout2d()
- Dropout2D module
-
nn_dropout3d()
- Dropout3D module
-
nn_elu()
- ELU module
-
nn_embedding()
- Embedding module
-
nn_embedding_bag()
- Embedding bag module
-
nn_flatten()
- Flattens a contiguous range of dims into a tensor.
-
nn_fractional_max_pool2d()
- Applies a 2D fractional max pooling over an input signal composed of several input planes.
-
nn_fractional_max_pool3d()
- Applies a 3D fractional max pooling over an input signal composed of several input planes.
-
nn_gelu()
- GELU module
-
nn_glu()
- GLU module
-
nn_group_norm()
- Group normalization
-
nn_gru()
- Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.
-
nn_hardshrink()
- Hardshwink module
-
nn_hardsigmoid()
- Hardsigmoid module
-
nn_hardswish()
- Hardswish module
-
nn_hardtanh()
- Hardtanh module
-
nn_hinge_embedding_loss()
- Hinge embedding loss
-
nn_identity()
- Identity module
-
nn_init_calculate_gain()
- Calculate gain
-
nn_init_constant_()
- Constant initialization
-
nn_init_dirac_()
- Dirac initialization
-
nn_init_eye_()
- Eye initialization
-
nn_init_kaiming_normal_()
- Kaiming normal initialization
-
nn_init_kaiming_uniform_()
- Kaiming uniform initialization
-
nn_init_normal_()
- Normal initialization
-
nn_init_ones_()
- Ones initialization
-
nn_init_orthogonal_()
- Orthogonal initialization
-
nn_init_sparse_()
- Sparse initialization
-
nn_init_trunc_normal_()
- Truncated normal initialization
-
nn_init_uniform_()
- Uniform initialization
-
nn_init_xavier_normal_()
- Xavier normal initialization
-
nn_init_xavier_uniform_()
- Xavier uniform initialization
-
nn_init_zeros_()
- Zeros initialization
-
nn_kl_div_loss()
- Kullback-Leibler divergence loss
-
nn_l1_loss()
- L1 loss
-
nn_layer_norm()
- Layer normalization
-
nn_leaky_relu()
- LeakyReLU module
-
nn_linear()
- Linear module
-
nn_log_sigmoid()
- LogSigmoid module
-
nn_log_softmax()
- LogSoftmax module
-
nn_lp_pool1d()
- Applies a 1D power-average pooling over an input signal composed of several input planes.
-
nn_lp_pool2d()
- Applies a 2D power-average pooling over an input signal composed of several input planes.
-
nn_lstm()
- Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.
-
nn_margin_ranking_loss()
- Margin ranking loss
-
nn_max_pool1d()
- MaxPool1D module
-
nn_max_pool2d()
- MaxPool2D module
-
nn_max_pool3d()
- Applies a 3D max pooling over an input signal composed of several input planes.
-
nn_max_unpool1d()
- Computes a partial inverse of
MaxPool1d
.
-
nn_max_unpool2d()
- Computes a partial inverse of
MaxPool2d
.
-
nn_max_unpool3d()
- Computes a partial inverse of
MaxPool3d
.
-
nn_module()
- Base class for all neural network modules.
-
nn_module_dict()
- Container that allows named values
-
nn_module_list()
- Holds submodules in a list.
-
nn_mse_loss()
- MSE loss
-
nn_multi_margin_loss()
- Multi margin loss
-
nn_multihead_attention()
- MultiHead attention
-
nn_multilabel_margin_loss()
- Multilabel margin loss
-
nn_multilabel_soft_margin_loss()
- Multi label soft margin loss
-
nn_nll_loss()
- Nll loss
-
nn_pairwise_distance()
- Pairwise distance
-
nn_parameter()
- Creates an
nn_parameter
-
nn_poisson_nll_loss()
- Poisson NLL loss
-
nn_prelu()
- PReLU module
-
nn_prune_head()
- Prune top layer(s) of a network
-
nn_relu()
- ReLU module
-
nn_relu6()
- ReLu6 module
-
nn_rnn()
- RNN module
-
nn_rrelu()
- RReLU module
-
nn_selu()
- SELU module
-
nn_sequential()
- A sequential container
-
nn_sigmoid()
- Sigmoid module
-
nn_silu()
- Applies the Sigmoid Linear Unit (SiLU) function, element-wise. The SiLU function is also known as the swish function.
-
nn_smooth_l1_loss()
- Smooth L1 loss
-
nn_soft_margin_loss()
- Soft margin loss
-
nn_softmax()
- Softmax module
-
nn_softmax2d()
- Softmax2d module
-
nn_softmin()
- Softmin
-
nn_softplus()
- Softplus module
-
nn_softshrink()
- Softshrink module
-
nn_softsign()
- Softsign module
-
nn_tanh()
- Tanh module
-
nn_tanhshrink()
- Tanhshrink module
-
nn_threshold()
- Threshold module
-
nn_triplet_margin_loss()
- Triplet margin loss
-
nn_triplet_margin_with_distance_loss()
- Triplet margin with distance loss
-
nn_unflatten()
- Unflattens a tensor dim expanding it to a desired shape. For use with [nn_sequential.
-
nn_upsample()
- Upsample module
-
nn_utils_clip_grad_norm_()
- Clips gradient norm of an iterable of parameters.
-
nn_utils_clip_grad_value_()
- Clips gradient of an iterable of parameters at specified value.
-
nn_utils_rnn_pack_padded_sequence()
- Packs a Tensor containing padded sequences of variable length.
-
nn_utils_rnn_pack_sequence()
- Packs a list of variable length Tensors
-
nn_utils_rnn_pad_packed_sequence()
- Pads a packed batch of variable length sequences.
-
nn_utils_rnn_pad_sequence()
- Pad a list of variable length Tensors with
padding_value
-
nn_utils_weight_norm
- nn_utils_weight_norm
-
is_nn_module()
- Checks if the object is an nn_module
-
is_nn_parameter()
- Checks if an object is a nn_parameter
-
is_nn_buffer()
- Checks if the object is a nn_buffer
-
nnf_adaptive_avg_pool1d()
- Adaptive_avg_pool1d
-
nnf_adaptive_avg_pool2d()
- Adaptive_avg_pool2d
-
nnf_adaptive_avg_pool3d()
- Adaptive_avg_pool3d
-
nnf_adaptive_max_pool1d()
- Adaptive_max_pool1d
-
nnf_adaptive_max_pool2d()
- Adaptive_max_pool2d
-
nnf_adaptive_max_pool3d()
- Adaptive_max_pool3d
-
nnf_affine_grid()
- Affine_grid
-
nnf_alpha_dropout()
- Alpha_dropout
-
nnf_avg_pool1d()
- Avg_pool1d
-
nnf_avg_pool2d()
- Avg_pool2d
-
nnf_avg_pool3d()
- Avg_pool3d
-
nnf_batch_norm()
- Batch_norm
-
nnf_bilinear()
- Bilinear
-
nnf_binary_cross_entropy()
- Binary_cross_entropy
-
nnf_binary_cross_entropy_with_logits()
- Binary_cross_entropy_with_logits
-
nnf_celu()
nnf_celu_()
- Celu
-
nnf_contrib_sparsemax()
- Sparsemax
-
nnf_conv1d()
- Conv1d
-
nnf_conv2d()
- Conv2d
-
nnf_conv3d()
- Conv3d
-
nnf_conv_tbc()
- Conv_tbc
-
nnf_conv_transpose1d()
- Conv_transpose1d
-
nnf_conv_transpose2d()
- Conv_transpose2d
-
nnf_conv_transpose3d()
- Conv_transpose3d
-
nnf_cosine_embedding_loss()
- Cosine_embedding_loss
-
nnf_cosine_similarity()
- Cosine_similarity
-
nnf_cross_entropy()
- Cross_entropy
-
nnf_ctc_loss()
- Ctc_loss
-
nnf_dropout()
- Dropout
-
nnf_dropout2d()
- Dropout2d
-
nnf_dropout3d()
- Dropout3d
-
nnf_elu()
nnf_elu_()
- Elu
-
nnf_embedding()
- Embedding
-
nnf_embedding_bag()
- Embedding_bag
-
nnf_fold()
- Fold
-
nnf_fractional_max_pool2d()
- Fractional_max_pool2d
-
nnf_fractional_max_pool3d()
- Fractional_max_pool3d
-
nnf_gelu()
- Gelu
-
nnf_glu()
- Glu
-
nnf_grid_sample()
- Grid_sample
-
nnf_group_norm()
- Group_norm
-
nnf_gumbel_softmax()
- Gumbel_softmax
-
nnf_hardshrink()
- Hardshrink
-
nnf_hardsigmoid()
- Hardsigmoid
-
nnf_hardswish()
- Hardswish
-
nnf_hardtanh()
nnf_hardtanh_()
- Hardtanh
-
nnf_hinge_embedding_loss()
- Hinge_embedding_loss
-
nnf_instance_norm()
- Instance_norm
-
nnf_interpolate()
- Interpolate
-
nnf_kl_div()
- Kl_div
-
nnf_l1_loss()
- L1_loss
-
nnf_layer_norm()
- Layer_norm
-
nnf_leaky_relu()
- Leaky_relu
-
nnf_linear()
- Linear
-
nnf_local_response_norm()
- Local_response_norm
-
nnf_log_softmax()
- Log_softmax
-
nnf_logsigmoid()
- Logsigmoid
-
nnf_lp_pool1d()
- Lp_pool1d
-
nnf_lp_pool2d()
- Lp_pool2d
-
nnf_margin_ranking_loss()
- Margin_ranking_loss
-
nnf_max_pool1d()
- Max_pool1d
-
nnf_max_pool2d()
- Max_pool2d
-
nnf_max_pool3d()
- Max_pool3d
-
nnf_max_unpool1d()
- Max_unpool1d
-
nnf_max_unpool2d()
- Max_unpool2d
-
nnf_max_unpool3d()
- Max_unpool3d
-
nnf_mse_loss()
- Mse_loss
-
nnf_multi_head_attention_forward()
- Multi head attention forward
-
nnf_multi_margin_loss()
- Multi_margin_loss
-
nnf_multilabel_margin_loss()
- Multilabel_margin_loss
-
nnf_multilabel_soft_margin_loss()
- Multilabel_soft_margin_loss
-
nnf_nll_loss()
- Nll_loss
-
nnf_normalize()
- Normalize
-
nnf_one_hot()
- One_hot
-
nnf_pad()
- Pad
-
nnf_pairwise_distance()
- Pairwise_distance
-
nnf_pdist()
- Pdist
-
nnf_pixel_shuffle()
- Pixel_shuffle
-
nnf_poisson_nll_loss()
- Poisson_nll_loss
-
nnf_prelu()
- Prelu
-
nnf_relu()
nnf_relu_()
- Relu
-
nnf_relu6()
- Relu6
-
nnf_rrelu()
nnf_rrelu_()
- Rrelu
-
nnf_selu()
nnf_selu_()
- Selu
-
nnf_sigmoid()
- Sigmoid
-
nnf_silu()
- Applies the Sigmoid Linear Unit (SiLU) function, element-wise. See
nn_silu()
for more information.
-
nnf_smooth_l1_loss()
- Smooth_l1_loss
-
nnf_soft_margin_loss()
- Soft_margin_loss
-
nnf_softmax()
- Softmax
-
nnf_softmin()
- Softmin
-
nnf_softplus()
- Softplus
-
nnf_softshrink()
- Softshrink
-
nnf_softsign()
- Softsign
-
nnf_tanhshrink()
- Tanhshrink
-
nnf_threshold()
nnf_threshold_()
- Threshold
-
nnf_triplet_margin_loss()
- Triplet_margin_loss
-
nnf_triplet_margin_with_distance_loss()
- Triplet margin with distance loss
-
nnf_unfold()
- Unfold
-
torch_device()
- Create a Device object
-
local_device()
with_device()
- Device contexts
-
optimizer()
- Creates a custom optimizer
-
optim_adadelta()
- Adadelta optimizer
-
optim_adagrad()
- Adagrad optimizer
-
optim_adam()
- Implements Adam algorithm.
-
optim_adamw()
- Implements AdamW algorithm
-
optim_asgd()
- Averaged Stochastic Gradient Descent optimizer
-
optim_lbfgs()
- LBFGS optimizer
-
optim_required()
- Dummy value indicating a required value.
-
optim_rmsprop()
- RMSprop optimizer
-
optim_rprop()
- Implements the resilient backpropagation algorithm.
-
optim_sgd()
- SGD optimizer
-
is_optimizer()
- Checks if the object is a torch optimizer
-
lr_cosine_annealing()
- Set the learning rate of each parameter group using a cosine annealing schedule
-
lr_lambda()
- Sets the learning rate of each parameter group to the initial lr times a given function. When last_epoch=-1, sets initial lr as lr.
-
lr_multiplicative()
- Multiply the learning rate of each parameter group by the factor given in the specified function. When last_epoch=-1, sets initial lr as lr.
-
lr_one_cycle()
- Once cycle learning rate
-
lr_reduce_on_plateau()
- Reduce learning rate on plateau
-
lr_scheduler()
- Creates learning rate schedulers
-
lr_step()
- Step learning rate decay
-
dataset()
- Helper function to create an function that generates R6 instances of class
dataset
-
dataset_subset()
- Dataset Subset
-
iterable_dataset()
- Creates an iterable dataset
-
dataloader()
- Data loader. Combines a dataset and a sampler, and provides single- or multi-process iterators over the dataset.
-
dataloader_make_iter()
- Creates an iterator from a DataLoader
-
dataloader_next()
- Get the next element of a dataloader iterator
-
enumerate()
- Enumerate an iterator
-
enumerate(<dataloader>)
- Enumerate an iterator
-
tensor_dataset()
- Dataset wrapping tensors.
-
is_dataloader()
- Checks if the object is a dataloader
-
sampler()
- Creates a new Sampler
-
Distribution
- Generic R6 class representing distributions
-
distr_bernoulli()
- Creates a Bernoulli distribution parameterized by
probs
orlogits
(but not both). Samples are binary (0 or 1). They take the value1
with probabilityp
and0
with probability1 - p
.
-
distr_categorical()
- Creates a categorical distribution parameterized by either
probs
orlogits
(but not both).
-
distr_chi2()
- Creates a Chi2 distribution parameterized by shape parameter
df
. This is exactly equivalent todistr_gamma(alpha=0.5*df, beta=0.5)
-
distr_gamma()
- Creates a Gamma distribution parameterized by shape
concentration
andrate
.
-
distr_mixture_same_family()
- Mixture of components in the same family
-
distr_multivariate_normal()
- Gaussian distribution
-
distr_normal()
- Creates a normal (also called Gaussian) distribution parameterized by
loc
andscale
.
-
distr_poisson()
- Creates a Poisson distribution parameterized by
rate
, the rate parameter.
-
Constraint
- Abstract base class for constraints.
-
autograd_backward()
- Computes the sum of gradients of given tensors w.r.t. graph leaves.
-
autograd_function()
- Records operation history and defines formulas for differentiating ops.
-
autograd_grad()
- Computes and returns the sum of gradients of outputs w.r.t. the inputs.
-
autograd_set_grad_mode()
- Set grad mode
-
with_no_grad()
local_no_grad()
- Temporarily modify gradient recording.
-
with_enable_grad()
local_enable_grad()
- Enable grad
-
with_detect_anomaly()
- Context-manager that enable anomaly detection for the autograd engine.
-
AutogradContext
- Class representing the context.
-
local_autocast()
with_autocast()
set_autocast()
unset_autocast()
- Autocast context manager
-
cuda_amp_grad_scaler()
- Creates a gradient scaler
-
torch_manual_seed()
local_torch_manual_seed()
with_torch_manual_seed()
- Sets the seed for generating random numbers.
-
torch_get_rng_state()
torch_set_rng_state()
cuda_get_rng_state()
cuda_set_rng_state()
- RNG state management
-
linalg_cholesky()
- Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix.
-
linalg_cholesky_ex()
- Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix.
-
linalg_cond()
- Computes the condition number of a matrix with respect to a matrix norm.
-
linalg_det()
- Computes the determinant of a square matrix.
-
linalg_eig()
- Computes the eigenvalue decomposition of a square matrix if it exists.
-
linalg_eigh()
- Computes the eigenvalue decomposition of a complex Hermitian or real symmetric matrix.
-
linalg_eigvals()
- Computes the eigenvalues of a square matrix.
-
linalg_eigvalsh()
- Computes the eigenvalues of a complex Hermitian or real symmetric matrix.
-
linalg_householder_product()
- Computes the first
n
columns of a product of Householder matrices.
-
linalg_inv()
- Computes the inverse of a square matrix if it exists.
-
linalg_inv_ex()
- Computes the inverse of a square matrix if it is invertible.
-
linalg_lstsq()
- Computes a solution to the least squares problem of a system of linear equations.
-
linalg_matrix_norm()
- Computes a matrix norm.
-
linalg_matrix_power()
- Computes the
n
-th power of a square matrix for an integern
.
-
linalg_matrix_rank()
- Computes the numerical rank of a matrix.
-
linalg_multi_dot()
- Efficiently multiplies two or more matrices
-
linalg_norm()
- Computes a vector or matrix norm.
-
linalg_pinv()
- Computes the pseudoinverse (Moore-Penrose inverse) of a matrix.
-
linalg_qr()
- Computes the QR decomposition of a matrix.
-
linalg_slogdet()
- Computes the sign and natural logarithm of the absolute value of the determinant of a square matrix.
-
linalg_solve()
- Computes the solution of a square system of linear equations with a unique solution.
-
linalg_solve_triangular()
- Triangular solve
-
linalg_svd()
- Computes the singular value decomposition (SVD) of a matrix.
-
linalg_svdvals()
- Computes the singular values of a matrix.
-
linalg_tensorinv()
- Computes the multiplicative inverse of
torch_tensordot()
-
linalg_tensorsolve()
- Computes the solution
X
to the systemtorch_tensordot(A, X) = B
.
-
linalg_vector_norm()
- Computes a vector norm.
-
cuda_amp_grad_scaler()
- Creates a gradient scaler
-
cuda_current_device()
- Returns the index of a currently selected device.
-
cuda_device_count()
- Returns the number of GPUs available.
-
cuda_empty_cache()
- Empty cache
-
cuda_get_device_capability()
- Returns the major and minor CUDA capability of
device
-
cuda_is_available()
- Returns a bool indicating if CUDA is currently available.
-
cuda_memory_stats()
cuda_memory_summary()
- Returns a dictionary of CUDA memory allocator statistics for a given device.
-
cuda_runtime_version()
- Returns the CUDA runtime version
-
cuda_synchronize()
- Waits for all kernels in all streams on a CUDA device to complete.
-
torch_get_rng_state()
torch_set_rng_state()
cuda_get_rng_state()
cuda_set_rng_state()
- RNG state management
-
jit_compile()
- Compile TorchScript code into a graph
-
jit_load()
- Loads a
script_function
orscript_module
previously saved withjit_save
-
jit_ops
- Enable idiomatic access to JIT operators from R.
-
jit_save()
- Saves a
script_function
to a path
-
jit_save_for_mobile()
- Saves a
script_function
orscript_module
in bytecode form, to be loaded on a mobile device
-
jit_scalar()
- Adds the 'jit_scalar' class to the input
-
jit_trace()
- Trace a function and return an executable
script_function
.
-
jit_trace_module()
- Trace a module
-
jit_tuple()
- Adds the 'jit_tuple' class to the input
-
backends_cudnn_is_available()
- CuDNN is available
-
backends_cudnn_version()
- CuDNN version
-
backends_mkl_is_available()
- MKL is available
-
backends_mkldnn_is_available()
- MKLDNN is available
-
backends_mps_is_available()
- MPS is available
-
backends_openmp_is_available()
- OpenMP is available
-
install_torch()
- Install Torch
-
get_install_libs_url()
install_torch_from_file()
- Install Torch from files
-
contrib_sort_vertices()
- Contrib sort vertices