Applies a 2D transposed convolution operator over an input image composed of several input planes.
Usage
nn_conv_transpose2d(
in_channels,
out_channels,
kernel_size,
stride = 1,
padding = 0,
output_padding = 0,
groups = 1,
bias = TRUE,
dilation = 1,
padding_mode = "zeros"
)
Arguments
- in_channels
(int): Number of channels in the input image
- out_channels
(int): Number of channels produced by the convolution
- kernel_size
(int or tuple): Size of the convolving kernel
- stride
(int or tuple, optional): Stride of the convolution. Default: 1
- padding
(int or tuple, optional):
dilation * (kernel_size - 1) - padding
zero-padding will be added to both sides of each dimension in the input. Default: 0- output_padding
(int or tuple, optional): Additional size added to one side of each dimension in the output shape. Default: 0
- groups
(int, optional): Number of blocked connections from input channels to output channels. Default: 1
- bias
(bool, optional): If
True
, adds a learnable bias to the output. Default:True
- dilation
(int or tuple, optional): Spacing between kernel elements. Default: 1
- padding_mode
(string, optional):
'zeros'
,'reflect'
,'replicate'
or'circular'
. Default:'zeros'
Details
This module can be seen as the gradient of Conv2d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation).
stride
controls the stride for the cross-correlation.padding
controls the amount of implicit zero-paddings on both sides fordilation * (kernel_size - 1) - padding
number of points. See note below for details.output_padding
controls the additional size added to one side of the output shape. See note below for details.dilation
controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but thislink
_ has a nice visualization of whatdilation
does.groups
controls the connections between inputs and outputs.in_channels
andout_channels
must both be divisible bygroups
. For example,At groups=1, all inputs are convolved to all outputs.
At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
At groups=
in_channels
, each input channel is convolved with its own set of filters (of size \(\left\lfloor\frac{out\_channels}{in\_channels}\right\rfloor\)).
The parameters kernel_size
, stride
, padding
, output_padding
can either be:
a single
int
-- in which case the same value is used for the height and width dimensionsa
tuple
of two ints -- in which case, the firstint
is used for the height dimension, and the secondint
for the width dimension
Note
Depending of the size of your kernel, several (of the last)
columns of the input might be lost, because it is a valid cross-correlation
_,
and not a full cross-correlation
. It is up to the user to add proper padding.
The padding
argument effectively adds dilation * (kernel_size - 1) - padding
amount of zero padding to both sizes of the input. This is set so that
when a nn_conv2d and a nn_conv_transpose2d are initialized with same
parameters, they are inverses of each other in
regard to the input and output shapes. However, when stride > 1
,
nn_conv2d maps multiple input shapes to the same output
shape. output_padding
is provided to resolve this ambiguity by
effectively increasing the calculated output shape on one side. Note
that output_padding
is only used to find output shape, but does
not actually add zero-padding to output.
In some circumstances when using the CUDA backend with CuDNN, this operator
may select a nondeterministic algorithm to increase performance. If this is
undesirable, you can try to make the operation deterministic (potentially at
a performance cost) by setting torch.backends.cudnn.deterministic = TRUE
.
Shape
Input: \((N, C_{in}, H_{in}, W_{in})\)
Output: \((N, C_{out}, H_{out}, W_{out})\) where $$ H_{out} = (H_{in} - 1) \times \mbox{stride}[0] - 2 \times \mbox{padding}[0] + \mbox{dilation}[0] \times (\mbox{kernel\_size}[0] - 1) + \mbox{output\_padding}[0] + 1 $$ $$ W_{out} = (W_{in} - 1) \times \mbox{stride}[1] - 2 \times \mbox{padding}[1] + \mbox{dilation}[1] \times (\mbox{kernel\_size}[1] - 1) + \mbox{output\_padding}[1] + 1 $$
Attributes
weight (Tensor): the learnable weights of the module of shape \((\mbox{in\_channels}, \frac{\mbox{out\_channels}}{\mbox{groups}},\) \(\mbox{kernel\_size[0]}, \mbox{kernel\_size[1]})\). The values of these weights are sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{groups}{C_{\mbox{out}} * \prod_{i=0}^{1}\mbox{kernel\_size}[i]}\)
bias (Tensor): the learnable bias of the module of shape (out_channels) If
bias
isTrue
, then the values of these weights are sampled from \(\mathcal{U}(-\sqrt{k}, \sqrt{k})\) where \(k = \frac{groups}{C_{\mbox{out}} * \prod_{i=0}^{1}\mbox{kernel\_size}[i]}\)
Examples
if (torch_is_installed()) {
# With square kernels and equal stride
m <- nn_conv_transpose2d(16, 33, 3, stride = 2)
# non-square kernels and unequal stride and with padding
m <- nn_conv_transpose2d(16, 33, c(3, 5), stride = c(2, 1), padding = c(4, 2))
input <- torch_randn(20, 16, 50, 100)
output <- m(input)
# exact output size can be also specified as an argument
input <- torch_randn(1, 16, 12, 12)
downsample <- nn_conv2d(16, 16, 3, stride = 2, padding = 1)
upsample <- nn_conv_transpose2d(16, 16, 3, stride = 2, padding = 1)
h <- downsample(input)
h$size()
output <- upsample(h, output_size = input$size())
output$size()
}
#> [1] 1 16 12 12