Norm
Arguments
- self
(Tensor) the input tensor
- p
(int, float, inf, -inf, 'fro', 'nuc', optional) the order of norm. Default:
'fro'
The following norms can be calculated: ===== ============================ ========================== ord matrix norm vector norm ===== ============================ ========================== NULL Frobenius norm 2-norm 'fro' Frobenius norm -- 'nuc' nuclear norm -- Other as vec norm when dim is NULL sum(abs(x)ord)(1./ord) ===== ============================ ==========================- dim
(int, 2-tuple of ints, 2-list of ints, optional) If it is an int, vector norm will be calculated, if it is 2-tuple of ints, matrix norm will be calculated. If the value is NULL, matrix norm will be calculated when the input tensor only has two dimensions, vector norm will be calculated when the input tensor only has one dimension. If the input tensor has more than two dimensions, the vector norm will be applied to last dimension.
- keepdim
(bool, optional) whether the output tensors have
dim
retained or not. Ignored ifdim
=NULL
andout
=NULL
. Default:FALSE
Ignored ifdim
=NULL
andout
=NULL
.- dtype
(
torch.dtype
, optional) the desired data type of returned tensor. If specified, the input tensor is casted to 'dtype' while performing the operation. Default: NULL.
Examples
if (torch_is_installed()) {
a <- torch_arange(1, 9, dtype = torch_float())
b <- a$reshape(list(3, 3))
torch_norm(a)
torch_norm(b)
torch_norm(a, Inf)
torch_norm(b, Inf)
}
#> torch_tensor
#> 9
#> [ CPUFloatType{} ]