Var_mean
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_var_mean.Rd
Var_mean
Arguments
- self
(Tensor) the input tensor.
- dim
(int or tuple of ints) the dimension or dimensions to reduce.
- unbiased
(bool) whether to use the unbiased estimation or not
- keepdim
(bool) whether the output tensor has
dim
retained or not.
var_mean(input, unbiased=TRUE) -> (Tensor, Tensor)
Returns the variance and mean of all elements in the input
tensor.
If unbiased
is FALSE
, then the variance will be calculated via the
biased estimator. Otherwise, Bessel's correction will be used.
var_mean(input, dim, keepdim=False, unbiased=TRUE) -> (Tensor, Tensor)
Returns the variance and mean of each row of the input
tensor in the given
dimension dim
.
If keepdim
is TRUE
, the output tensor is of the same size
as input
except in the dimension(s) dim
where it is of size 1.
Otherwise, dim
is squeezed (see torch_squeeze
), resulting in the
output tensor having 1 (or len(dim)
) fewer dimension(s).
If unbiased
is FALSE
, then the variance will be calculated via the
biased estimator. Otherwise, Bessel's correction will be used.
Examples
if (torch_is_installed()) {
a = torch_randn(c(1, 3))
a
torch_var_mean(a)
a = torch_randn(c(4, 4))
a
torch_var_mean(a, 1)
}
#> [[1]]
#> torch_tensor
#> 0.2780
#> 1.6386
#> 0.5056
#> 1.7292
#> [ CPUFloatType{4} ]
#>
#> [[2]]
#> torch_tensor
#> 0.0747
#> -0.1032
#> -0.7452
#> 0.3950
#> [ CPUFloatType{4} ]
#>