Skip to contents
library(torch)

# creates example tensors. x requires_grad = TRUE tells that
# we are going to take derivatives over it.
dense <- nn_module(
  clasname = "dense",
  # the initialize function tuns whenever we instantiate the model
  initialize = function(in_features, out_features) {

    # just for you to see when this function is called
    cat("Calling initialize!")

    # we use nn_parameter to indicate that those tensors are special
    # and should be treated as parameters by `nn_module`.
    self$w <- nn_parameter(torch_randn(in_features, out_features))
    self$b <- nn_parameter(torch_zeros(out_features))

  },
  # this function is called whenever we call our model on input.
  forward = function(x) {
    cat("Calling forward!")
    torch_mm(x, self$w) + self$b
  }
)

model <- dense(3, 1)
## Calling initialize!
# you can get all parameters
model$parameters
## $w
## torch_tensor
## -0.1788
## -1.8612
##  3.0243
## [ CPUFloatType{3,1} ][ requires_grad = TRUE ]
## 
## $b
## torch_tensor
##  0
## [ CPUFloatType{1} ][ requires_grad = TRUE ]
# or individually
model$w
## torch_tensor
## -0.1788
## -1.8612
##  3.0243
## [ CPUFloatType{3,1} ][ requires_grad = TRUE ]
model$b
## torch_tensor
##  0
## [ CPUFloatType{1} ][ requires_grad = TRUE ]
# create an input tensor
x <- torch_randn(10, 3)
y_pred <- model(x)
## Calling forward!
y_pred
## torch_tensor
## -4.6684
##  1.4381
##  1.3243
##  0.7651
## -1.8940
##  2.5614
## -3.0528
##  6.0273
## -1.3356
##  0.5106
## [ CPUFloatType{10,1} ][ grad_fn = <AddBackward0> ]