Std_mean
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_std_mean.Rd
Std_mean
Arguments
- self
(Tensor) the input tensor.
- dim
(int or tuple of ints) the dimension or dimensions to reduce.
- unbiased
(bool) whether to use the unbiased estimation or not
- keepdim
(bool) whether the output tensor has
dim
retained or not.
std_mean(input, unbiased=TRUE) -> (Tensor, Tensor)
Returns the standard-deviation and mean of all elements in the input
tensor.
If unbiased
is FALSE
, then the standard-deviation will be calculated
via the biased estimator. Otherwise, Bessel's correction will be used.
std_mean(input, dim, unbiased=TRUE, keepdim=False) -> (Tensor, Tensor)
Returns the standard-deviation and mean of each row of the input
tensor in the
dimension dim
. If dim
is a list of dimensions,
reduce over all of them.
If keepdim
is TRUE
, the output tensor is of the same size
as input
except in the dimension(s) dim
where it is of size 1.
Otherwise, dim
is squeezed (see torch_squeeze
), resulting in the
output tensor having 1 (or len(dim)
) fewer dimension(s).
If unbiased
is FALSE
, then the standard-deviation will be calculated
via the biased estimator. Otherwise, Bessel's correction will be used.
Examples
if (torch_is_installed()) {
a = torch_randn(c(1, 3))
a
torch_std_mean(a)
a = torch_randn(c(4, 4))
a
torch_std_mean(a, 1)
}
#> [[1]]
#> torch_tensor
#> 0.3698
#> 0.3130
#> 0.6728
#> 1.1034
#> [ CPUFloatType{4} ]
#>
#> [[2]]
#> torch_tensor
#> -0.1066
#> 0.0862
#> 0.1781
#> 0.1767
#> [ CPUFloatType{4} ]
#>