Skip to contents

Poisson negative log likelihood loss.

Usage

nnf_poisson_nll_loss(
  input,
  target,
  log_input = TRUE,
  full = FALSE,
  eps = 1e-08,
  reduction = "mean"
)

Arguments

input

tensor (N,*) where ** means, any number of additional dimensions

target

tensor (N,*) , same shape as the input

log_input

if TRUE the loss is computed as \(\exp(\mbox{input}) - \mbox{target} * \mbox{input}\), if FALSE then loss is \(\mbox{input} - \mbox{target} * \log(\mbox{input}+\mbox{eps})\). Default: TRUE.

full

whether to compute full loss, i. e. to add the Stirling approximation term. Default: FALSE.

eps

(float, optional) Small value to avoid evaluation of \(\log(0)\) when log_input=FALSE. Default: 1e-8

reduction

(string, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Default: 'mean'