Letting be or ,
the eigenvalues of a square matrix are defined
as the roots (counted with multiplicity) of the polynomial p
of degree n
given by
Details
where is the n
-dimensional identity matrix.
Supports input of float, double, cfloat and cdouble dtypes.
Also supports batches of matrices, and if A
is a batch of matrices then
the output has the same batch dimensions.
Note
The eigenvalues of a real matrix may be complex, as the roots of a real polynomial may be complex. The eigenvalues of a matrix are always well-defined, even when the matrix is not diagonalizable.
See also
linalg_eig()
computes the full eigenvalue decomposition.
Other linalg:
linalg_cholesky_ex()
,
linalg_cholesky()
,
linalg_det()
,
linalg_eigh()
,
linalg_eigvalsh()
,
linalg_eig()
,
linalg_householder_product()
,
linalg_inv_ex()
,
linalg_inv()
,
linalg_lstsq()
,
linalg_matrix_norm()
,
linalg_matrix_power()
,
linalg_matrix_rank()
,
linalg_multi_dot()
,
linalg_norm()
,
linalg_pinv()
,
linalg_qr()
,
linalg_slogdet()
,
linalg_solve_triangular()
,
linalg_solve()
,
linalg_svdvals()
,
linalg_svd()
,
linalg_tensorinv()
,
linalg_tensorsolve()
,
linalg_vector_norm()
Examples
if (torch_is_installed()) {
a <- torch_randn(2, 2)
w <- linalg_eigvals(a)
}