Skip to contents

Fills the input Tensor with values according to the method described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015), using a normal distribution.

Usage

nn_init_kaiming_normal_(
  tensor,
  a = 0,
  mode = "fan_in",
  nonlinearity = "leaky_relu"
)

Arguments

tensor

an n-dimensional torch.Tensor

a

the negative slope of the rectifier used after this layer (only used with 'leaky_relu')

mode

either 'fan_in' (default) or 'fan_out'. Choosing 'fan_in' preserves the magnitude of the variance of the weights in the forward pass. Choosing 'fan_out' preserves the magnitudes in the backwards pass.

nonlinearity

the non-linear function. recommended to use only with 'relu' or 'leaky_relu' (default).

Examples

if (torch_is_installed()) {
w <- torch_empty(3, 5)
nn_init_kaiming_normal_(w, mode = "fan_in", nonlinearity = "leaky_relu")
}
#> torch_tensor
#> -0.5483  0.6051 -0.1700  0.4698 -0.3578
#>  0.0111  0.0262  0.0239 -0.5470 -1.0493
#>  0.7398  0.0686  0.7970 -0.6537 -0.3586
#> [ CPUFloatType{3,5} ]