Skip to contents

MaxPool3d is not fully invertible, since the non-maximal values are lost. MaxUnpool3d takes in as input the output of MaxPool3d including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero.

Usage

nn_max_unpool3d(kernel_size, stride = NULL, padding = 0)

Arguments

kernel_size

(int or tuple): Size of the max pooling window.

stride

(int or tuple): Stride of the max pooling window. It is set to kernel_size by default.

padding

(int or tuple): Padding that was added to the input

Note

MaxPool3d can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argument output_size in the forward call. See the Inputs section below.

Inputs

  • input: the input Tensor to invert

  • indices: the indices given out by nn_max_pool3d()

  • output_size (optional): the targeted output size

Shape

  • Input: \((N, C, D_{in}, H_{in}, W_{in})\)

  • Output: \((N, C, D_{out}, H_{out}, W_{out})\), where

$$ D_{out} = (D_{in} - 1) \times \mbox{stride[0]} - 2 \times \mbox{padding[0]} + \mbox{kernel\_size[0]} $$ $$ H_{out} = (H_{in} - 1) \times \mbox{stride[1]} - 2 \times \mbox{padding[1]} + \mbox{kernel\_size[1]} $$ $$ W_{out} = (W_{in} - 1) \times \mbox{stride[2]} - 2 \times \mbox{padding[2]} + \mbox{kernel\_size[2]} $$

or as given by output_size in the call operator

Examples

if (torch_is_installed()) {

# pool of square window of size=3, stride=2
pool <- nn_max_pool3d(3, stride = 2, return_indices = TRUE)
unpool <- nn_max_unpool3d(3, stride = 2)
out <- pool(torch_randn(20, 16, 51, 33, 15))
unpooled_output <- unpool(out[[1]], out[[2]])
unpooled_output$size()
}
#> [1] 20 16 51 33 15