Applied element-wise, as:
Details
$$ \mbox{SELU}(x) = \mbox{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) $$
with \(\alpha = 1.6732632423543772848170429916717\) and \(\mbox{scale} = 1.0507009873554804934193349852946\).
More details can be found in the paper Self-Normalizing Neural Networks.
Shape
Input: \((N, *)\) where
*
means, any number of additional dimensionsOutput: \((N, *)\), same shape as the input
Examples
if (torch_is_installed()) {
m <- nn_selu()
input <- torch_randn(2)
output <- m(input)
}