Applies 2D average-pooling operation in \(kH * kW\) regions by step size \(sH * sW\) steps. The number of output features is equal to the number of input planes.
Usage
nnf_avg_pool2d(
input,
kernel_size,
stride = NULL,
padding = 0,
ceil_mode = FALSE,
count_include_pad = TRUE,
divisor_override = NULL
)
Arguments
- input
input tensor (minibatch, in_channels , iH , iW)
- kernel_size
size of the pooling region. Can be a single number or a tuple
(kH, kW)
- stride
stride of the pooling operation. Can be a single number or a tuple
(sH, sW)
. Default:kernel_size
- padding
implicit zero paddings on both sides of the input. Can be a single number or a tuple
(padH, padW)
. Default: 0- ceil_mode
when True, will use
ceil
instead offloor
in the formula to compute the output shape. Default:FALSE
- count_include_pad
when True, will include the zero-padding in the averaging calculation. Default:
TRUE
- divisor_override
if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default:
NULL