Pads tensor.
Arguments
- input
(Tensor) N-dimensional tensor
- pad
(tuple) m-elements tuple, where \(\frac{m}{2} \leq\) input dimensions and \(m\) is even.
- mode
'constant', 'reflect', 'replicate' or 'circular'. Default: 'constant'
- value
fill value for 'constant' padding. Default: 0.
Padding size
The padding size by which to pad some dimensions of input
are described starting from the last dimension and moving forward.
\(\left\lfloor\frac{\mbox{len(pad)}}{2}\right\rfloor\) dimensions
of input
will be padded.
For example, to pad only the last dimension of the input tensor, then
pad
has the form
\((\mbox{padding\_left}, \mbox{padding\_right})\);
to pad the last 2 dimensions of the input tensor, then use
\((\mbox{padding\_left}, \mbox{padding\_right},\)
\(\mbox{padding\_top}, \mbox{padding\_bottom})\);
to pad the last 3 dimensions, use
\((\mbox{padding\_left}, \mbox{padding\_right},\)
\(\mbox{padding\_top}, \mbox{padding\_bottom}\)
\(\mbox{padding\_front}, \mbox{padding\_back})\).
Padding mode
See nn_constant_pad_2d
, nn_reflection_pad_2d
, and
nn_replication_pad_2d
for concrete examples on how each of the
padding modes works. Constant padding is implemented for arbitrary dimensions.
tensor, or the last 2 dimensions of 4D input tensor, or the last dimension of
3D input tensor. Reflect padding is only implemented for padding the last 2
dimensions of 4D input tensor, or the last dimension of 3D input tensor.