Std
Arguments
- self
(Tensor) the input tensor.
- dim
(int or tuple of ints) the dimension or dimensions to reduce.
- unbiased
(bool) whether to use the unbiased estimation or not
- keepdim
(bool) whether the output tensor has
dim
retained or not.
std(input, unbiased=TRUE) -> Tensor
Returns the standard-deviation of all elements in the input
tensor.
If unbiased
is FALSE
, then the standard-deviation will be calculated
via the biased estimator. Otherwise, Bessel's correction will be used.
std(input, dim, unbiased=TRUE, keepdim=False, out=NULL) -> Tensor
Returns the standard-deviation of each row of the input
tensor in the
dimension dim
. If dim
is a list of dimensions,
reduce over all of them.
If keepdim
is TRUE
, the output tensor is of the same size
as input
except in the dimension(s) dim
where it is of size 1.
Otherwise, dim
is squeezed (see torch_squeeze
), resulting in the
output tensor having 1 (or len(dim)
) fewer dimension(s).
If unbiased
is FALSE
, then the standard-deviation will be calculated
via the biased estimator. Otherwise, Bessel's correction will be used.
Examples
if (torch_is_installed()) {
a = torch_randn(c(1, 3))
a
torch_std(a)
a = torch_randn(c(4, 4))
a
torch_std(a, dim=1)
}
#> torch_tensor
#> 1.1563
#> 0.3994
#> 0.5251
#> 1.2504
#> [ CPUFloatType{4} ]