For use with nn_sequential.
Shape
Input:
(*, S_start,..., S_i, ..., S_end, *)
, whereS_i
is the size at dimensioni
and*
means any number of dimensions including none.Output:
(*, S_start*...*S_i*...S_end, *)
.
Examples
if (torch_is_installed()) {
input <- torch_randn(32, 1, 5, 5)
m <- nn_flatten()
m(input)
}
#> torch_tensor
#> Columns 1 to 10-0.4564 -1.5073 0.5497 1.2690 0.2805 0.8745 -0.1714 -1.2182 0.5817 2.5260
#> 0.1726 1.8020 0.3345 -0.3391 -1.2676 -0.4416 -1.7936 -1.7196 1.6160 -0.7320
#> -0.0802 0.2737 0.6623 -0.9949 0.3428 0.0287 0.1118 -0.4883 -1.8418 0.1383
#> 0.9751 1.0405 0.8780 1.2091 0.5893 0.2838 1.5434 0.0994 0.3885 -0.7656
#> 0.2698 0.4232 -0.3511 0.1175 0.1361 0.0383 0.7326 1.4436 -1.4710 2.7677
#> -0.9150 -0.5797 -0.0834 0.8490 0.7260 -0.7782 0.7401 -1.0088 0.3847 0.4047
#> 0.5272 1.4707 -0.2838 -0.5025 -0.8974 -1.5952 2.6368 0.4668 1.0256 -0.7069
#> 0.4759 -2.1402 -0.1902 0.5277 1.2522 -0.5384 -0.6096 0.2944 0.9573 0.1592
#> -0.0209 1.2632 -1.9044 0.6052 0.3372 -0.4870 -0.2241 -1.0503 2.0364 -0.1824
#> 0.1214 0.7721 1.0641 0.3216 0.9411 -0.8525 -1.0814 -1.6334 0.5118 0.3395
#> 0.1396 0.2217 -0.1864 -2.4815 0.2841 1.4050 0.5889 0.6023 -0.1523 -0.2286
#> 0.2678 1.2935 1.1647 -0.9079 -1.2944 0.4700 1.3818 -0.2454 -0.6113 -0.2494
#> 1.0374 0.6224 -1.0964 -1.3096 0.8058 1.1509 -0.9216 -0.2936 -0.8257 -0.2227
#> -0.4486 1.2104 0.7425 -1.0250 -0.2056 -1.0988 -1.5947 -0.0354 0.3439 0.8311
#> 0.5120 -0.9835 -0.1008 -2.2105 -1.3647 -1.0679 -1.6044 0.4893 -0.6770 0.1899
#> -0.7842 0.2087 0.9352 -0.3174 1.0417 -0.4669 1.3730 -1.7400 -1.1924 -2.0405
#> -1.4671 -0.0890 -0.0270 -0.5465 -0.3102 0.9836 0.0224 -1.9111 -1.1364 -0.3986
#> -0.1907 -0.5955 -0.5841 -0.4615 1.1937 0.3206 0.3811 -0.1038 0.4761 -0.6049
#> 0.7128 -1.5405 0.2317 -0.5764 0.7383 -0.1455 1.5122 -0.6212 0.1258 0.5868
#> -0.7376 0.2268 1.3751 0.7903 -0.0813 -1.7839 -0.8434 0.5972 0.3105 1.7661
#> -1.4599 -0.3859 -1.0658 1.0453 1.6535 -1.4690 1.0379 -0.1948 0.8792 1.3892
#> -0.7044 -0.8459 -0.2484 -1.4675 -0.0218 0.1154 0.2738 -1.5023 -0.8953 1.1687
#> -0.7322 -0.8064 -0.1959 -0.1409 0.3140 0.3069 0.0245 0.7191 -0.1918 -0.4427
#> 0.4433 1.0745 -1.1966 1.0263 0.8565 -2.2794 -0.4021 -0.4019 -0.3807 -0.6614
#> -0.1984 0.2898 1.3428 0.3479 -0.2362 -0.2064 -1.2705 0.8913 -0.2967 -1.8749
#> 1.3018 2.1807 0.0172 -0.8683 0.0526 -0.3754 -1.5504 4.0639 1.5641 -0.7921
#> 0.5940 -0.5404 -0.2321 1.6841 -2.1358 1.5249 1.7429 1.7604 -0.7297 -0.4787
#> 0.4936 1.1300 1.7504 -0.4836 -1.7765 -0.6934 0.4544 0.1452 1.3361 0.3230
#> 0.7975 0.7564 -0.0099 0.1687 0.1865 -0.5273 -1.1146 0.8344 -0.0278 -0.5672
#> 1.9465 0.6860 -0.6113 0.5324 1.2483 1.5408 -1.9892 0.7030 -1.7189 0.7876
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{32,25} ]