For use with nn_sequential.
Shape
Input:
(*, S_start,..., S_i, ..., S_end, *)
, whereS_i
is the size at dimensioni
and*
means any number of dimensions including none.Output:
(*, S_start*...*S_i*...S_end, *)
.
Examples
if (torch_is_installed()) {
input <- torch_randn(32, 1, 5, 5)
m <- nn_flatten()
m(input)
}
#> torch_tensor
#> Columns 1 to 10 0.8363 -0.3256 -0.4786 0.4918 -0.1015 0.1258 0.1979 0.9321 -0.6600 1.3199
#> -1.8637 -0.3717 0.6395 1.2469 -0.7469 -0.5629 1.0271 0.7804 -0.7988 -1.3247
#> -0.1052 -0.3213 -0.3297 0.6581 0.1536 0.0539 -0.7068 -0.0125 -0.5364 -0.4371
#> -2.5628 -0.0252 0.7139 -0.7850 -0.2618 0.5437 2.5489 -0.1465 -0.8824 0.1699
#> -0.8299 -0.2559 -0.7929 -1.2493 -0.9130 -0.4865 -0.8339 0.2704 -0.5661 0.1688
#> -1.1734 0.7865 -0.3662 0.4057 0.2161 1.0954 -0.3886 0.3570 0.2990 0.0424
#> 2.4535 0.1636 -0.7828 0.4661 -1.2721 -1.5155 2.6867 -0.8884 0.0915 -1.3064
#> 0.3381 -0.1856 0.5741 -0.0522 0.4898 0.9619 -0.8632 -0.3784 -0.0413 -0.8654
#> -0.0890 0.8701 1.1518 -0.0622 0.8780 -0.1893 0.0032 0.7527 2.1900 -1.5672
#> -0.6924 -0.1470 -1.0178 0.5447 -1.4386 -2.1014 0.1374 0.1113 0.4166 -1.6090
#> -0.6099 0.4878 0.2439 1.0805 -2.4736 1.2622 -0.4508 0.0710 -0.2118 0.4840
#> 1.3652 0.3586 1.3446 -1.2617 0.2227 -0.2251 -1.3073 0.3871 -0.9402 -2.2198
#> -1.1752 -2.4829 1.0623 -0.1295 -1.7841 -0.3106 -0.4599 -0.5127 0.3953 0.2507
#> 0.2775 0.5822 -0.5385 -0.2347 -1.2937 0.4608 0.8570 -0.5311 -2.1176 -0.3868
#> 0.3904 -0.3603 1.8086 0.5579 -1.0509 0.5568 1.4320 -0.5581 -0.3594 -0.0707
#> -1.0962 -1.4403 -0.6322 0.9969 0.4771 -0.2581 -0.4036 0.7380 -0.2318 -0.2320
#> -1.2448 -0.2072 1.4055 0.9122 0.1834 -0.6248 0.7494 -1.2834 0.3880 0.1614
#> 0.2231 0.3096 -0.2867 0.0919 -0.0397 -0.3460 1.0747 -0.6362 0.5474 -1.5688
#> -0.1734 2.3959 0.3902 -0.6522 -1.1334 -1.2269 1.6429 0.2281 1.0753 0.0146
#> 0.0776 -0.4170 -1.6294 -0.5945 -0.5626 -1.2356 1.4144 -0.9075 -0.1166 -0.3353
#> 1.0399 -1.6310 -1.8600 1.4366 1.3080 0.2777 -0.0126 1.3186 0.0548 0.1706
#> 1.0001 1.0330 -0.5809 0.8497 -0.1221 0.0575 -0.7429 -2.4301 1.3044 -1.2506
#> 1.1858 -0.6114 1.0749 1.4718 2.1165 0.1892 -0.8370 -1.8317 -0.7127 1.3438
#> -0.4971 1.0097 -1.6796 -0.2751 -0.5355 -1.3880 -0.5643 -0.7484 0.9216 0.0598
#> -1.0390 -0.7038 1.3012 0.2949 2.7809 0.5763 -1.5078 0.8914 0.0625 0.5295
#> 1.1428 1.1021 1.3025 -0.8892 -2.2874 -0.7009 -1.5269 0.4270 -1.7136 0.2684
#> -0.1402 -1.4849 0.4509 0.3660 -0.9828 -0.1642 -0.9167 -1.7075 -0.8357 0.5786
#> -0.7500 -0.3658 0.0622 1.4039 1.4773 -0.6211 -1.2986 1.4092 -1.5415 -1.1659
#> -0.8204 0.1765 -0.1658 1.2714 -0.9564 -1.1254 -0.0642 -0.7576 -0.4577 -1.3671
#> -1.9819 1.3220 -0.0896 0.6675 0.6286 0.7109 1.2182 0.3065 -0.3123 1.7906
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{32,25} ]