For use with nn_sequential.
Shape
Input:
(*, S_start,..., S_i, ..., S_end, *), whereS_iis the size at dimensioniand*means any number of dimensions including none.Output:
(*, S_start*...*S_i*...S_end, *).
Examples
if (torch_is_installed()) {
input <- torch_randn(32, 1, 5, 5)
m <- nn_flatten()
m(input)
}
#> torch_tensor
#> Columns 1 to 10 0.3414 1.4172 -0.2245 -2.3498 0.8088 -0.5900 -1.4348 -0.2555 0.0856 -0.1470
#> -0.2562 1.0186 0.7340 -0.9071 0.1262 0.0185 0.2693 -0.2455 -1.2903 1.3679
#> -0.1227 0.3036 -1.7116 1.3567 -1.0850 -0.1995 -0.1796 1.1058 -0.4257 0.3216
#> -0.0304 -0.0993 -0.8617 0.5962 -1.2919 -1.0631 0.5723 -2.6218 1.9393 -1.5536
#> -0.5744 -0.0140 -0.3859 1.6819 -0.3882 -0.9478 0.4032 -0.9905 -1.2374 -2.1449
#> 0.3335 0.4189 0.5678 -1.1395 0.3034 -1.1231 -0.1766 -0.1657 -0.7484 -0.2134
#> -1.9903 -1.6371 -0.8343 -0.4999 -1.1450 -0.7339 0.5514 0.6359 -0.2671 -1.1508
#> 0.9898 -0.3173 1.1422 0.0984 0.6608 0.9813 -0.9789 -2.4036 -0.3874 -0.2408
#> -0.6683 1.0776 0.8150 0.1223 2.0755 0.8961 -1.3912 -0.1158 0.6846 -1.1518
#> 0.6964 0.1632 0.2014 -1.0950 1.1358 -0.3988 -0.3358 1.2969 -0.1528 0.3344
#> 2.3188 1.2347 -1.3994 0.1436 -1.0340 0.3865 0.4184 1.4298 1.0784 1.0048
#> -0.8209 -0.2545 1.9278 0.3264 0.0207 1.5441 -2.5865 1.5996 1.4066 -1.1861
#> 1.0962 -0.9140 0.5624 0.0875 0.0536 -1.9282 -0.7041 -1.1322 1.9905 1.0092
#> 0.9830 -1.8805 0.5195 -0.0745 -1.2066 -0.2288 0.0403 0.5113 -1.8514 -0.7671
#> -0.2433 1.0515 -1.9236 -0.0143 0.7319 0.2881 -0.4955 1.2336 0.4039 0.8045
#> 0.6902 1.0722 -1.7630 -0.3296 0.9708 0.8026 -0.7594 -1.2242 1.0917 1.5090
#> 0.1586 -1.1633 -1.3019 2.0981 -1.2106 -0.4412 0.0987 -0.7431 -2.3836 -0.4060
#> -1.1836 -0.5273 -1.2248 1.8811 -0.0855 0.3938 -0.7996 0.0970 -0.8964 0.2675
#> 1.5628 -0.2681 -0.7136 0.1082 0.6869 0.6946 0.8965 -1.3609 -0.4226 -0.7592
#> -0.0218 -1.8922 -0.5585 -0.5389 -0.8711 1.8041 0.2643 -0.7478 0.5371 1.2493
#> 0.0994 0.7220 -1.1397 -0.3484 1.0617 -0.0595 0.9764 1.3327 0.5193 -0.9787
#> -0.1262 -1.0548 -1.8387 -1.4496 0.8483 -1.6491 -0.1907 -0.3284 -1.4446 0.0115
#> -0.1807 0.6286 1.0333 -0.7512 -1.6034 -0.4044 0.4790 0.4853 0.8527 1.4714
#> -0.9737 0.1319 1.1866 1.8487 0.1008 -0.0325 0.5450 0.1374 -1.6942 1.5386
#> -0.3499 0.5352 -0.9529 1.3397 0.3577 0.9674 1.0757 0.4940 -1.1408 -0.5594
#> 2.1339 -1.6276 -0.6136 -0.9999 -0.0202 0.4095 0.8060 0.9502 0.3855 -0.6868
#> 1.1898 0.6490 0.3671 -0.2081 2.3352 -1.0646 1.0199 -0.5126 -0.5850 -0.7029
#> 0.2236 0.4740 -0.7601 -0.1738 -0.4172 -0.4636 -0.2691 0.8853 0.3416 0.1001
#> 1.7272 -0.2192 -1.1331 0.1856 -2.1165 1.8084 1.2823 0.3418 -0.2047 2.0500
#> -0.1034 2.3951 0.7393 -0.3647 1.2854 -0.7929 -1.0363 0.8989 -0.6022 0.9659
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{32,25} ]