For use with nn_sequential.
Shape
Input:
(*, S_start,..., S_i, ..., S_end, *)
, whereS_i
is the size at dimensioni
and*
means any number of dimensions including none.Output:
(*, S_start*...*S_i*...S_end, *)
.
Examples
if (torch_is_installed()) {
input <- torch_randn(32, 1, 5, 5)
m <- nn_flatten()
m(input)
}
#> torch_tensor
#> Columns 1 to 10-0.9571 1.6592 -0.2323 -1.6471 -1.8793 -0.3683 -0.0853 -0.9550 -0.4621 -0.0464
#> 0.8072 2.4895 -0.5589 -0.7303 -0.8830 -1.1251 1.4869 0.3585 1.6185 0.7496
#> 0.8841 -0.6671 -0.4314 0.7101 1.5338 -1.9426 0.8332 0.3004 1.1373 0.2065
#> -0.0668 -0.5524 1.0513 1.0903 -0.6771 2.6969 -0.2460 0.6590 1.4297 -0.0496
#> -1.2511 -0.8658 -2.1736 0.5545 -0.9881 -0.2018 -0.6243 0.2036 1.0107 -0.7657
#> -2.0047 0.0427 1.5561 0.8322 -1.0416 0.1485 1.0042 0.4580 -1.1130 0.8739
#> -1.2104 -0.9117 -0.7445 -1.0981 2.1362 -0.6999 0.4471 0.9765 0.9637 0.4417
#> 1.2669 0.8675 0.3785 -0.6823 0.7229 -1.5626 0.6557 0.4447 0.4621 0.2302
#> -0.4654 0.6996 -0.6080 0.9469 1.1712 -0.4571 -0.9274 -0.2954 -1.5229 0.2889
#> -1.0546 -1.2194 -0.7099 0.3171 0.0063 -2.5885 1.6679 -0.3129 -2.0505 -0.0774
#> 0.5720 0.5062 -0.8775 -0.4986 2.7378 -0.0296 -0.9162 -1.1689 -1.9835 0.5710
#> -1.0160 0.5521 1.7306 0.1221 -1.0176 1.1187 0.0790 0.7083 -0.9332 1.4890
#> 0.4825 1.8684 0.0969 0.8444 0.3898 -1.8941 0.5713 0.9188 -0.6848 0.7938
#> 0.1405 -1.0038 0.1679 0.3242 -1.0768 -0.0694 -1.0332 1.0079 -1.6051 -3.1210
#> 1.3659 0.1020 -3.3906 0.0673 0.4053 0.8891 3.1177 -0.8219 0.1251 1.3046
#> -1.2841 -1.4083 0.0556 1.4591 0.1922 -0.7719 0.8671 -0.6127 2.1985 0.1154
#> -1.3085 1.1456 0.7479 0.3848 -0.8237 -2.6003 -1.0206 2.1019 -1.3630 0.9006
#> 1.0463 -1.5990 -0.3356 -0.7759 -1.2385 -0.7116 -1.6957 -2.2060 0.0896 -0.2121
#> -2.5620 -2.0381 1.0893 0.1268 0.7412 -0.3007 1.7156 -1.0850 0.9956 -1.8835
#> 0.0086 0.0466 -0.0294 -1.9219 -0.0545 0.9125 0.7264 -0.0740 -0.4062 0.8395
#> 2.4524 -1.5889 -0.4447 1.2555 0.6987 -0.9715 -0.4903 0.2438 1.2227 -0.2038
#> 0.0523 2.3234 0.9988 0.4462 -0.4854 -0.2596 -0.3039 -1.0841 0.3256 -1.0636
#> 0.0629 1.2226 1.1187 0.5607 -1.9311 1.2610 -0.5135 0.5986 -0.2121 -0.9744
#> 0.6450 0.3404 1.4999 2.4073 -0.5204 -0.3866 0.8997 -1.8204 0.7991 -0.7386
#> -1.5448 0.5148 -0.8396 -1.2368 -1.5499 0.2404 0.0704 -1.3424 -1.1331 1.7935
#> 1.4228 1.9040 0.4883 0.6146 1.1026 0.8579 1.2681 -0.5473 1.3474 1.3822
#> 0.1560 0.2021 1.4415 0.7699 -0.4344 -1.1750 -0.1161 0.6952 1.0595 -1.6398
#> 0.3382 0.9180 -1.6900 -2.1795 0.6575 -0.9624 2.9444 1.5540 -0.0276 1.2687
#> 1.5577 0.0760 -0.3957 0.0165 0.0041 0.2445 -0.7913 -0.2085 -0.7764 0.0848
#> 2.2800 1.8133 -0.6212 -0.3263 -0.2665 -0.2042 -1.0677 -0.9938 1.0428 -0.5579
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{32,25} ]