Applies a 2D average pooling over an input signal composed of several input planes.
Source:R/nn-pooling.R
nn_avg_pool2d.Rd
In the simplest case, the output value of the layer with input size \((N, C, H, W)\),
output \((N, C, H_{out}, W_{out})\) and kernel_size
\((kH, kW)\)
can be precisely described as:
Usage
nn_avg_pool2d(
kernel_size,
stride = NULL,
padding = 0,
ceil_mode = FALSE,
count_include_pad = TRUE,
divisor_override = NULL
)
Arguments
- kernel_size
the size of the window
- stride
the stride of the window. Default value is
kernel_size
- padding
implicit zero padding to be added on both sides
- ceil_mode
when TRUE, will use
ceil
instead offloor
to compute the output shape- count_include_pad
when TRUE, will include the zero-padding in the averaging calculation
- divisor_override
if specified, it will be used as divisor, otherwise
kernel_size
will be used
Details
$$ out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n) $$
If padding
is non-zero, then the input is implicitly zero-padded on both sides
for padding
number of points.
The parameters kernel_size
, stride
, padding
can either be:
a single
int
-- in which case the same value is used for the height and width dimensiona
tuple
of two ints -- in which case, the firstint
is used for the height dimension, and the secondint
for the width dimension
Shape
Input: \((N, C, H_{in}, W_{in})\)
Output: \((N, C, H_{out}, W_{out})\), where
$$ H_{out} = \left\lfloor\frac{H_{in} + 2 \times \mbox{padding}[0] - \mbox{kernel\_size}[0]}{\mbox{stride}[0]} + 1\right\rfloor $$ $$ W_{out} = \left\lfloor\frac{W_{in} + 2 \times \mbox{padding}[1] - \mbox{kernel\_size}[1]}{\mbox{stride}[1]} + 1\right\rfloor $$
Examples
if (torch_is_installed()) {
# pool of square window of size=3, stride=2
m <- nn_avg_pool2d(3, stride = 2)
# pool of non-square window
m <- nn_avg_pool2d(c(3, 2), stride = c(2, 1))
input <- torch_randn(20, 16, 50, 32)
output <- m(input)
}