A simple lookup table that stores embeddings of a fixed dictionary and size. This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings.
Usage
nn_embedding(
num_embeddings,
embedding_dim,
padding_idx = NULL,
max_norm = NULL,
norm_type = 2,
scale_grad_by_freq = FALSE,
sparse = FALSE,
.weight = NULL
)Arguments
- num_embeddings
(int): size of the dictionary of embeddings
- embedding_dim
(int): the size of each embedding vector
- padding_idx
(int, optional): If given, pads the output with the embedding vector at
padding_idx(initialized to zeros) whenever it encounters the index.- max_norm
(float, optional): If given, each embedding vector with norm larger than
max_normis renormalized to have normmax_norm.- norm_type
(float, optional): The p of the p-norm to compute for the
max_normoption. Default2.- scale_grad_by_freq
(boolean, optional): If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default
False.- sparse
(bool, optional): If
True, gradient w.r.t.weightmatrix will be a sparse tensor.- .weight
(Tensor) embeddings weights (in case you want to set it manually)
See Notes for more details regarding sparse gradients.
Note
Keep in mind that only a limited number of optimizers support
sparse gradients: currently it's optim.SGD (CUDA and CPU),
optim.SparseAdam (CUDA and CPU) and optim.Adagrad (CPU)
With padding_idx set, the embedding vector at
padding_idx is initialized to all zeros. However, note that this
vector can be modified afterwards, e.g., using a customized
initialization method, and thus changing the vector used to pad the
output. The gradient for this vector from nn_embedding
is always zero.
Attributes
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) initialized from
Shape
Input:
, LongTensor of arbitrary shape containing the indices to extractOutput:
, where*is the input shape and
Examples
if (torch_is_installed()) {
# an Embedding module containing 10 tensors of size 3
embedding <- nn_embedding(10, 3)
# a batch of 2 samples of 4 indices each
input <- torch_tensor(rbind(c(1, 2, 4, 5), c(4, 3, 2, 9)), dtype = torch_long())
embedding(input)
# example with padding_idx
embedding <- nn_embedding(10, 3, padding_idx = 1)
input <- torch_tensor(matrix(c(1, 3, 1, 6), nrow = 1), dtype = torch_long())
embedding(input)
}
#> torch_tensor
#> (1,.,.) =
#> 0.0000 0.0000 0.0000
#> 1.4144 1.0019 0.2100
#> 0.0000 0.0000 0.0000
#> -0.1355 0.0393 0.3315
#> [ CPUFloatType{1,4,3} ][ grad_fn = <EmbeddingBackward0> ]