Skip to contents

This does two things:

Usage

with_detect_anomaly(code)

Arguments

code

Code that will be executed in the detect anomaly context.

Details

  • Running the forward pass with detection enabled will allow the backward pass to print the traceback of the forward operation that created the failing backward function.

  • Any backward computation that generate "nan" value will raise an error.

Warning

This mode should be enabled only for debugging as the different tests will slow down your program execution.

Examples

if (torch_is_installed()) {
x <- torch_randn(2, requires_grad = TRUE)
y <- torch_randn(1)
b <- (x^y)$sum()
y$add_(1)

try({
  b$backward()

  with_detect_anomaly({
    b$backward()
  })
})
}
#> Error in (function (self, inputs, gradient, retain_graph, create_graph)  : 
#>   one of the variables needed for gradient computation has been modified by an inplace operation: [CPUFloatType [1]] is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
#> Exception raised from unpack at /Users/runner/work/libtorch-mac-m1/libtorch-mac-m1/pytorch/torch/csrc/autograd/saved_variable.cpp:187 (most recent call first):
#> frame #0: std::__1::shared_ptr<c10::(anonymous namespace)::PyTorchStyleBacktrace> std::__1::make_shared[abi:ue170006]<c10::(anonymous namespace)::PyTorchStyleBacktrace, c10::SourceLocation&, void>(c10::SourceLocation&) + 121 (0x106211639 in libc10.dylib)
#> frame #1: c10::Error::Error(c10::SourceLocation, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>) + 54 (0x106211776 in libc10.dylib)
#> frame #2: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) + 149 (0x10620e035 in libc10.dylib)
#> frame #3: torch::autograd::SavedVariable::unpack(std::__1::shared_ptr<torch::autograd::Node>) const + 1987 (0x11d0c06f3 in libtorch_cpu.dylib)
#> frame #4: torch::autograd::generated::PowBackward1::apply(std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>>&&) + 84 (0x11bf371a4 in libtorch_cpu.dylib)
#> frame #5: torch::autograd::Node::operator()(std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>>&&) + 104 (0x11d087108 in libtorch_cpu.dylib)
#> frame #6: torch::autograd::Engine::evaluate_function(std::__1::shared_ptr<torch::autograd::GraphTask>&, torch::autograd::Node*, torch::autograd::InputBuffer&, std::__1::shared_ptr<torch::autograd::ReadyQueue> const&) + 3039 (0x11d07fbdf in libtorch_cpu.dylib)
#> frame #7: torch::autograd::Engine::thread_main(std::__1::shared_ptr<torch::autograd::GraphTask> const&) + 1140 (0x11d07e9d4 in libtorch_cpu.dylib)
#> frame #8: torch::autograd::Engine::execute_with_graph_task(std::__1::shared_ptr<torch::autograd::GraphTask> const&, std::__1::shared_ptr<torch::autograd::Node>, torch::autograd::InputBuffer&&) + 415 (0x11d08655f in libtorch_cpu.dylib)
#> frame #9: torch::autograd::Engine::execute(std::__1::vector<torch::autograd::Edge, std::__1::allocator<torch::autograd::Edge>> const&, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, bool, bool, bool, std::__1::vector<torch::autograd::Edge, std::__1::allocator<torch::autograd::Edge>> const&) + 1786 (0x11d084dda in libtorch_cpu.dylib)
#> frame #10: torch::autograd::run_backward(std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, bool, bool, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, bool, bool) + 982 (0x11d06c186 in libtorch_cpu.dylib)
#> frame #11: torch::autograd::backward(std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, std::__1::optional<bool>, bool, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&) + 107 (0x11d06b68b in libtorch_cpu.dylib)
#> frame #12: torch::autograd::VariableHooks::_backward(at::Tensor const&, c10::ArrayRef<at::Tensor>, std::__1::optional<at::Tensor> const&, std::__1::optional<bool>, bool) const + 296 (0x11d0c5918 in libtorch_cpu.dylib)
#> frame #13: at::Tensor::_backward(c10::ArrayRef<at::Tensor>, std::__1::optional<at::Tensor> const&, std::__1::optional<bool>, bool) const + 73 (0x11908b419 in libtorch_cpu.dylib)
#> frame #14: _lantern_Tensor__backward_tensor_tensorlist_tensor_bool_bool + 211 (0x10a08b0f3 in liblantern.dylib)
#> frame #15: std::__1::__function::__func<cpp_torch_method__backward_self_Tensor_inputs_TensorList(XPtrTorchTensor, XPtrTorchTensorList, XPtrTorchOptionalTensor, XPtrTorchoptional_bool, XPtrTorchbool)::$_2, std::__1::allocator<cpp_torch_method__backward_self_Tensor_inputs_TensorList(XPtrTorchTensor, XPtrTorchTensorList, XPtrTorchOptionalTensor, XPtrTorchoptional_bool, XPtrTorchbool)::$_2>, void ()>::operator()() + 54 (0x108918036 in torchpkg.so)
#> frame #16: std::__1::packaged_task<void ()>::operator()() + 72 (0x108916108 in torchpkg.so)
#> frame #17: EventLoop<void>::run() + 413 (0x108915f5d in torchpkg.so)
#> frame #18: void* std::__1::__thread_proxy[abi:v160006]<std::__1::tuple<std::__1::unique_ptr<std::__1::__thread_struct, std::__1::default_delete<std::__1::__thread_struct>>, ThreadPool<void>::ThreadPool(int)::'lambda'()>>(void*) + 50 (0x108915cb2 in torchpkg.so)
#> frame #19: _pthread_start + 125 (0x7ff8057411d3 in libsystem_pthread.dylib)
#> frame #20: thread_start + 15 (0x7ff80573cbd3 in libsystem_pthread.dylib)
#>