Implements stochastic gradient descent (optionally with momentum). Nesterov momentum is based on the formula from On the importance of initialization and momentum in deep learning.
Usage
optim_ignite_sgd(
params,
lr = optim_required(),
momentum = 0,
dampening = 0,
weight_decay = 0,
nesterov = FALSE
)
Arguments
- params
(iterable): iterable of parameters to optimize or dicts defining parameter groups
- lr
(float): learning rate
- momentum
(float, optional): momentum factor (default: 0)
- dampening
(float, optional): dampening for momentum (default: 0)
- weight_decay
(float, optional): weight decay (L2 penalty) (default: 0)
- nesterov
(bool, optional): enables Nesterov momentum (default: FALSE)
Fields and Methods
See OptimizerIgnite
.
Examples
if (torch_is_installed()) {
if (FALSE) { # \dontrun{
optimizer <- optim_ignite_sgd(model$parameters(), lr = 0.1)
optimizer$zero_grad()
loss_fn(model(input), target)$backward()
optimizer$step()
} # }
}