Skip to contents

Implements stochastic gradient descent (optionally with momentum). Nesterov momentum is based on the formula from On the importance of initialization and momentum in deep learning.

Usage

optim_ignite_sgd(
  params,
  lr = optim_required(),
  momentum = 0,
  dampening = 0,
  weight_decay = 0,
  nesterov = FALSE
)

Arguments

params

(iterable): iterable of parameters to optimize or dicts defining parameter groups

lr

(float): learning rate

momentum

(float, optional): momentum factor (default: 0)

dampening

(float, optional): dampening for momentum (default: 0)

weight_decay

(float, optional): weight decay (L2 penalty) (default: 0)

nesterov

(bool, optional): enables Nesterov momentum (default: FALSE)

Fields and Methods

See OptimizerIgnite.

Examples

if (torch_is_installed()) {
if (FALSE) { # \dontrun{
optimizer <- optim_ignite_sgd(model$parameters(), lr = 0.1)
optimizer$zero_grad()
loss_fn(model(input), target)$backward()
optimizer$step()
} # }
}