Conv_transpose2d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv_transpose2d.Rd
Conv_transpose2d
Usage
torch_conv_transpose2d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
output_padding = 0L,
groups = 1L,
dilation = 1L
)
Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iH , iW)\)
- weight
filters of shape \((\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kH , kW)\)
- bias
optional bias of shape \((\mbox{out\_channels})\). Default: NULL
- stride
the stride of the convolving kernel. Can be a single number or a tuple
(sH, sW)
. Default: 1- padding
dilation * (kernel_size - 1) - padding
zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple(padH, padW)
. Default: 0- output_padding
additional size added to one side of each dimension in the output shape. Can be a single number or a tuple
(out_padH, out_padW)
. Default: 0- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
- dilation
the spacing between kernel elements. Can be a single number or a tuple
(dH, dW)
. Default: 1
conv_transpose2d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 2D transposed convolution operator over an input image composed of several input planes, sometimes also called "deconvolution".
See nn_conv_transpose2d()
for details and output shape.
Examples
if (torch_is_installed()) {
# With square kernels and equal stride
inputs = torch_randn(c(1, 4, 5, 5))
weights = torch_randn(c(4, 8, 3, 3))
nnf_conv_transpose2d(inputs, weights, padding=1)
}
#> torch_tensor
#> (1,1,.,.) =
#> -0.9863 -2.1015 -0.7686 4.6569 4.3497
#> -4.9922 3.4184 0.0460 -0.6890 7.4952
#> 5.5314 -1.1805 -0.0253 5.8615 -2.7114
#> 2.1113 3.0726 7.1237 -2.0755 -3.5216
#> 4.6665 -5.3079 -2.6928 -0.7921 1.6514
#>
#> (1,2,.,.) =
#> -5.4506 -14.0902 0.0557 9.6182 1.5526
#> 0.7919 0.8676 4.5834 4.1394 -0.5979
#> -2.8559 2.2970 4.3644 -14.7250 -1.2473
#> -5.2405 -2.2707 -2.3420 0.0843 3.2389
#> 1.5088 -0.2471 2.9301 6.5253 4.5815
#>
#> (1,3,.,.) =
#> -8.1272 -3.7910 1.7024 10.5755 1.1526
#> 5.3352 0.1813 7.7843 1.7031 2.8132
#> 5.1791 -4.5619 4.4660 -2.8693 7.4604
#> 2.2076 1.4190 -2.2263 -2.5487 -3.6389
#> 2.8728 -2.9609 4.4764 -3.8207 4.7798
#>
#> (1,4,.,.) =
#> 7.5384 5.1471 3.5030 -6.6308 2.5658
#> -3.0810 -7.5815 -5.2492 8.1604 -2.4829
#> 4.6761 -3.1848 3.4074 0.4728 -0.2657
#> -5.8688 13.5493 3.0594 -13.3597 0.1405
#> -2.6346 -4.1050 1.9900 6.8615 1.5911
#>
#> (1,5,.,.) =
#> -1.4595 -6.9167 -9.4588 4.4856 3.8772
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{1,8,5,5} ]