Full
Usage
torch_full(
size,
fill_value,
names = NULL,
dtype = NULL,
layout = NULL,
device = NULL,
requires_grad = FALSE
)Arguments
- size
(int...) a list, tuple, or
torch_Sizeof integers defining the shape of the output tensor.- fill_value
NA the number to fill the output tensor with.
- names
optional names of the dimensions
- dtype
(
torch.dtype, optional) the desired data type of returned tensor. Default: ifNULL, uses a global default (seetorch_set_default_tensor_type).- layout
(
torch.layout, optional) the desired layout of returned Tensor. Default:torch_strided.- device
(
torch.device, optional) the desired device of returned tensor. Default: ifNULL, uses the current device for the default tensor type (seetorch_set_default_tensor_type).devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.- requires_grad
(bool, optional) If autograd should record operations on the returned tensor. Default:
FALSE.
full(size, fill_value, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor
Returns a tensor of size size filled with fill_value.
Warning
In PyTorch 1.5 a bool or integral fill_value will produce a warning if
dtype or out are not set.
In a future PyTorch release, when dtype and out are not set
a bool fill_value will return a tensor of torch.bool dtype,
and an integral fill_value will return a tensor of torch.long dtype.
Examples
if (torch_is_installed()) {
torch_full(list(2, 3), 3.141592)
}
#> torch_tensor
#> 3.1416 3.1416 3.1416
#> 3.1416 3.1416 3.1416
#> [ CPUFloatType{2,3} ]