Conv_transpose1d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv_transpose1d.Rd
Conv_transpose1d
Usage
torch_conv_transpose1d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
output_padding = 0L,
groups = 1L,
dilation = 1L
)
Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)
- weight
filters of shape \((\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kW)\)
- bias
optional bias of shape \((\mbox{out\_channels})\). Default: NULL
- stride
the stride of the convolving kernel. Can be a single number or a tuple
(sW,)
. Default: 1- padding
dilation * (kernel_size - 1) - padding
zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple(padW,)
. Default: 0- output_padding
additional size added to one side of each dimension in the output shape. Can be a single number or a tuple
(out_padW)
. Default: 0- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
- dilation
the spacing between kernel elements. Can be a single number or a tuple
(dW,)
. Default: 1
conv_transpose1d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 1D transposed convolution operator over an input signal composed of several input planes, sometimes also called "deconvolution".
See nn_conv_transpose1d()
for details and output shape.
Examples
if (torch_is_installed()) {
inputs = torch_randn(c(20, 16, 50))
weights = torch_randn(c(16, 33, 5))
nnf_conv_transpose1d(inputs, weights)
}
#> torch_tensor
#> (1,.,.) =
#> Columns 1 to 6 5.2541e+00 -2.0668e+00 1.0623e+00 -1.2802e+00 -1.0578e+01 4.6613e+00
#> -9.3781e-01 -9.6152e+00 -3.5969e+00 -5.7889e+00 -1.1217e+01 1.1356e+01
#> 5.2971e+00 -1.3500e+01 1.5410e+01 -3.9218e+00 -8.5270e+00 1.4976e+01
#> -9.8344e+00 -8.5735e+00 4.0113e+00 -4.2230e+00 1.7653e+01 -1.3448e+01
#> -5.6829e+00 1.5947e+00 3.2126e+00 -7.0778e+00 -8.9623e-01 3.9162e+00
#> 6.2949e+00 -3.7269e-01 3.3599e+00 2.1149e+00 2.4228e+00 3.9571e+00
#> -6.2083e+00 1.0025e+01 9.4139e-02 -2.1641e+01 9.3871e+00 -7.9130e+00
#> 4.0801e-01 -1.5610e+01 7.5275e+00 3.1077e+00 -3.4684e+00 1.0770e+01
#> 7.5022e+00 4.0125e-02 1.3258e+00 1.9677e+00 -9.6444e+00 7.0841e-02
#> 1.1762e+01 -9.5921e+00 1.5677e+01 -1.0776e+01 1.0770e+01 6.9177e+00
#> 2.9540e+00 -1.0420e+01 -2.3489e+00 7.0055e+00 3.1187e+00 -7.2584e+00
#> 2.6843e+00 2.6946e+00 -1.6968e+00 1.0638e+01 -1.2575e+01 -5.6474e+00
#> -1.7625e+00 8.9843e+00 3.2183e+00 -7.9188e+00 1.3395e+01 -5.5159e+00
#> 1.9291e-01 1.0495e+01 7.9685e-01 2.7018e+00 1.6993e-01 -3.4039e+00
#> -4.5074e+00 -4.8730e+00 7.5460e+00 -8.3048e+00 -4.9748e+00 -2.6284e+00
#> 9.3630e+00 1.5203e+01 3.6573e+00 5.3076e+00 -1.8882e+01 -5.6262e+00
#> 3.5361e-01 -6.5436e+00 6.7610e+00 4.0246e+00 6.9639e+00 -4.7238e+00
#> 4.2562e+00 -8.3618e+00 6.0051e+00 -5.6847e+00 1.3941e+00 -8.6367e+00
#> -1.2052e+01 4.6459e+00 7.5283e+00 6.8172e+00 8.6650e+00 6.7877e+00
#> 2.0467e+00 -2.9341e+00 9.6027e+00 -9.1858e+00 7.0233e+00 -1.5314e+01
#> 1.1845e+00 5.6744e+00 1.0976e+01 2.8841e+00 1.0444e+00 2.5388e-01
#> -7.8691e+00 -3.3863e+00 -7.3923e+00 1.3705e+01 6.7138e+00 3.1078e+00
#> 3.8501e+00 -4.5830e+00 6.8409e+00 4.4484e-01 7.4642e+00 6.1101e+00
#> -1.9269e+00 4.3496e+00 -5.4194e+00 8.0312e+00 1.1284e+01 3.2208e-01
#> -8.4366e+00 8.0003e+00 -2.9822e+00 -3.8303e+00 2.5436e+00 -6.4539e+00
#> 4.4716e+00 -1.1458e+01 4.1074e+00 -2.8760e+00 3.9034e-01 -5.7900e+00
#> -5.0239e+00 -3.3466e+00 -3.4317e+00 -7.0105e+00 6.4688e+00 -4.7703e+00
#> 7.6602e+00 -9.0977e-01 -3.0971e-01 -4.1604e+00 -3.3196e+01 -4.8019e+00
#> 3.8746e+00 -5.6059e+00 -1.4430e+00 6.5607e+00 -8.1265e+00 -3.3211e+00
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{20,33,54} ]