Conv1d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv1d.Rd
Conv1d
Usage
torch_conv1d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
dilation = 1L,
groups = 1L
)
Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iW)\)
- weight
filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kW)\)
- bias
optional bias of shape \((\mbox{out\_channels})\). Default:
NULL
- stride
the stride of the convolving kernel. Can be a single number or a one-element tuple
(sW,)
. Default: 1- padding
implicit paddings on both sides of the input. Can be a single number or a one-element tuple
(padW,)
. Default: 0- dilation
the spacing between kernel elements. Can be a single number or a one-element tuple
(dW,)
. Default: 1- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
conv1d(input, weight, bias=NULL, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 1D convolution over an input signal composed of several input planes.
See nn_conv1d()
for details and output shape.
Examples
if (torch_is_installed()) {
filters = torch_randn(c(33, 16, 3))
inputs = torch_randn(c(20, 16, 50))
nnf_conv1d(inputs, filters)
}
#> torch_tensor
#> (1,.,.) =
#> Columns 1 to 8 5.3091 1.6474 -8.5928 -9.1854 1.1539 1.0365 3.2029 3.2000
#> -2.4033 1.0769 7.6355 0.9666 14.0089 -7.8355 4.7902 20.4158
#> 2.2252 -5.0655 1.1787 -1.5814 -0.9743 -5.0184 -8.6953 4.5736
#> 10.0465 -10.1242 3.8934 3.3830 -1.6990 18.2903 -1.0004 3.2715
#> -2.1156 -5.2430 0.8227 0.4614 -6.5196 -4.3353 -3.8137 -10.3028
#> 3.9357 -5.6533 -6.7586 -7.3395 13.9449 4.5662 4.6722 -1.3070
#> -3.6611 4.4279 -7.0320 8.6983 -6.9825 -7.7094 -1.5182 -4.0769
#> -5.6180 -6.8333 -11.9720 -10.6127 -8.9867 -4.7977 -11.6585 0.9435
#> -11.2728 -0.3050 -1.7377 2.2102 17.0027 0.8353 -2.8094 -12.8289
#> -4.2451 -2.5494 2.4805 -6.7119 1.5852 2.1265 2.9400 2.9380
#> 5.8075 2.5674 6.5344 4.3939 9.5012 0.5683 3.0541 4.5666
#> -8.5574 -6.0847 11.4207 21.7269 -7.6684 1.1783 0.2091 -14.8885
#> 15.8947 0.9798 1.5754 5.7413 -12.8788 -3.7434 9.5835 -5.3376
#> 1.8094 -0.7298 -7.5939 -8.2553 -2.5133 -3.9653 -3.0964 -0.2754
#> 2.9670 0.0847 4.7563 12.8355 7.5289 0.6380 -0.8193 -0.2097
#> -6.7872 8.9712 0.2255 -1.8510 9.8801 -7.8462 5.7897 -7.1962
#> 19.4638 -1.9347 -9.0598 -9.2916 6.1372 14.9076 0.0937 3.4374
#> -2.2431 5.1973 2.4891 12.6006 -9.0401 0.6933 -13.7860 0.1239
#> -5.5764 5.0687 -5.7678 18.8690 -2.4603 1.1795 -6.2500 -7.6422
#> 3.6513 -0.7294 -8.2284 -4.5181 11.6343 -3.2471 -0.0271 2.2047
#> -8.7015 8.0364 4.8884 -1.7910 0.1553 -7.1836 -0.2540 2.6998
#> 1.7347 0.2730 -0.8707 -1.3844 4.9136 -3.6489 -6.2753 10.9544
#> -4.3384 -2.3918 6.3215 13.5431 8.9800 -1.1426 2.1216 5.6288
#> 0.7760 -3.2082 0.8259 -5.7443 -7.2542 -15.0525 1.9777 -2.6702
#> -9.1423 0.9958 -3.9096 -9.7653 -8.1029 -5.1045 -13.8743 -0.3156
#> -1.6779 -0.9812 -0.3721 -6.7095 -10.8731 6.4269 -4.2481 2.1253
#> 5.5286 -7.1578 2.6841 11.5914 -10.3884 7.1804 -3.8635 -3.3625
#> -1.9944 1.2487 0.9406 1.2301 0.5804 6.4594 3.7814 2.8177
#> 0.1376 -2.8645 -4.3845 6.7084 9.2125 12.8587 -6.4231 1.4120
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{20,33,48} ]