Conv1d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv1d.Rd
Conv1d
Usage
torch_conv1d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
dilation = 1L,
groups = 1L
)
Arguments
- input
input tensor of shape
- weight
filters of shape
- bias
optional bias of shape
. Default:NULL
- stride
the stride of the convolving kernel. Can be a single number or a one-element tuple
(sW,)
. Default: 1- padding
implicit paddings on both sides of the input. Can be a single number or a one-element tuple
(padW,)
. Default: 0- dilation
the spacing between kernel elements. Can be a single number or a one-element tuple
(dW,)
. Default: 1- groups
split input into groups,
should be divisible by the number of groups. Default: 1
conv1d(input, weight, bias=NULL, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 1D convolution over an input signal composed of several input planes.
See nn_conv1d()
for details and output shape.
Examples
if (torch_is_installed()) {
filters = torch_randn(c(33, 16, 3))
inputs = torch_randn(c(20, 16, 50))
nnf_conv1d(inputs, filters)
}
#> torch_tensor
#> (1,.,.) =
#> Columns 1 to 8 1.8773 3.8270 -2.0085 2.2047 4.7765 8.5147 9.2855 5.9509
#> 0.2103 -1.1423 1.2525 -1.1455 -5.2979 3.2512 -8.2822 -6.5076
#> 8.4963 10.4915 12.3501 0.0996 11.2060 2.6952 8.9502 0.5847
#> -6.9101 -1.1191 -1.9844 -9.9915 -10.6002 -6.8776 -7.2207 -4.5275
#> -1.4377 12.2075 -4.9638 9.8613 -2.7525 2.0959 -5.8531 10.3158
#> -5.9119 2.1524 1.1103 14.6864 0.1861 -0.3529 0.1218 2.1229
#> 1.8779 -7.5407 10.1930 -4.9219 -4.7589 0.0839 5.8208 -8.2069
#> 14.0567 4.3517 -5.3931 10.8250 -2.4659 -1.4528 -5.4472 -11.8957
#> 3.3352 -2.1849 3.3825 -5.7497 9.3860 2.8892 -9.5488 10.0246
#> 3.7139 -1.1893 5.8524 -4.1144 -3.8379 -3.2715 12.3648 -7.3022
#> 6.3391 3.8490 0.0966 14.1187 -2.3296 -0.0499 3.3738 2.5069
#> -3.6039 -2.5855 -1.3693 -2.9448 -0.4943 11.5554 -18.9318 3.8286
#> 3.5501 0.7022 2.9863 -3.7678 5.5417 -12.0948 2.3262 8.9773
#> -10.2856 0.7309 -2.2191 -2.6726 8.9700 5.1367 -5.8212 6.7705
#> -6.2699 7.7844 1.1992 -9.8723 3.4002 1.0824 0.5633 -15.2554
#> 2.1602 4.6129 0.3140 2.4626 4.8185 10.2248 -7.9947 -1.0807
#> -3.0402 -1.2173 1.9523 2.3152 -10.9796 9.4768 1.9507 -5.2450
#> 9.8341 -0.3357 2.0597 1.1952 -1.9214 -17.4927 4.2024 2.6981
#> 1.7595 4.9181 8.0015 -9.8762 1.2017 10.8301 7.8083 -8.4442
#> -2.0629 -2.0021 -4.3751 -0.4534 -1.3962 4.8429 2.8299 -3.6940
#> 0.6280 -1.6077 13.0193 -0.7761 4.6628 2.7861 15.3083 6.0344
#> 0.0044 11.4955 -0.1855 4.5168 -8.7276 9.0557 -1.6152 -4.2556
#> -4.8506 9.5743 4.1419 2.7906 2.0023 11.7027 0.5959 -1.6895
#> 0.9182 -0.3823 -10.4505 -0.0190 -6.4589 -1.4466 -7.3250 -1.9068
#> 3.8625 -7.3053 7.0725 -8.6134 -6.7165 3.7123 -8.7002 -5.5387
#> 5.9330 4.9813 5.4131 3.0484 7.1562 10.4064 0.6227 11.3842
#> -10.1675 5.8252 2.6986 -7.9222 10.5096 1.6551 2.3947 0.3311
#> -4.4995 -5.1192 -6.8450 9.7043 -6.3504 -10.6412 -0.4556 1.8581
#> -4.1302 7.5991 -1.7031 2.8951 -1.7518 7.0743 -1.3617 10.7666
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{20,33,48} ]