Hann_window
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/wrapers.R
torch_hann_window.Rd
Hann_window
Usage
torch_hann_window(
window_length,
periodic = TRUE,
dtype = NULL,
layout = NULL,
device = NULL,
requires_grad = FALSE
)
Arguments
- window_length
(int) the size of returned window
- periodic
(bool, optional) If TRUE, returns a window to be used as periodic function. If False, return a symmetric window.
- dtype
(
torch.dtype
, optional) the desired data type of returned tensor. Default: ifNULL
, uses a global default (seetorch_set_default_tensor_type
). Only floating point types are supported.- layout
(
torch.layout
, optional) the desired layout of returned window tensor. Onlytorch_strided
(dense layout) is supported.- device
(
torch.device
, optional) the desired device of returned tensor. Default: ifNULL
, uses the current device for the default tensor type (seetorch_set_default_tensor_type
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.- requires_grad
(bool, optional) If autograd should record operations on the returned tensor. Default:
FALSE
.
hann_window(window_length, periodic=TRUE, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor
Hann window function.
$$ w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] = \sin^2 \left( \frac{\pi n}{N - 1} \right), $$ where \(N\) is the full window size.
The input window_length
is a positive integer controlling the
returned window size. periodic
flag determines whether the returned
window trims off the last duplicate value from the symmetric window and is
ready to be used as a periodic window with functions like
torch_stft
. Therefore, if periodic
is true, the \(N\) in
above formula is in fact \(\mbox{window\_length} + 1\). Also, we always have
torch_hann_window(L, periodic=TRUE)
equal to
torch_hann_window(L + 1, periodic=False)[:-1])
.