Quantize_per_channel
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_quantize_per_channel.Rd
Quantize_per_channel
Arguments
- self
(Tensor) float tensor to quantize
- scales
(Tensor) float 1D tensor of scales to use, size should match
input.size(axis)
- zero_points
(int) integer 1D tensor of offset to use, size should match
input.size(axis)
- axis
(int) dimension on which apply per-channel quantization
- dtype
(
torch.dtype
) the desired data type of returned tensor. Has to be one of the quantized dtypes:torch_quint8
,torch.qint8
,torch.qint32
quantize_per_channel(input, scales, zero_points, axis, dtype) -> Tensor
Converts a float tensor to per-channel quantized tensor with given scales and zero points.
Examples
if (torch_is_installed()) {
x = torch_tensor(matrix(c(-1.0, 0.0, 1.0, 2.0), ncol = 2, byrow = TRUE))
torch_quantize_per_channel(x, torch_tensor(c(0.1, 0.01)),
torch_tensor(c(10L, 0L)), 0, torch_quint8())
torch_quantize_per_channel(x, torch_tensor(c(0.1, 0.01)),
torch_tensor(c(10L, 0L)), 0, torch_quint8())$int_repr()
}
#> torch_tensor
#> 0 10
#> 100 200
#> [ CPUByteType{2,2} ]