Logspace
Source:R/creation-ops.R
, R/gen-namespace-docs.R
, R/gen-namespace-examples.R
torch_logspace.Rd
Logspace
Usage
torch_logspace(
start,
end,
steps = 100,
base = 10,
dtype = NULL,
layout = NULL,
device = NULL,
requires_grad = FALSE
)
Arguments
- start
(float) the starting value for the set of points
- end
(float) the ending value for the set of points
- steps
(int) number of points to sample between
start
andend
. Default:100
.- base
(float) base of the logarithm function. Default:
10.0
.- dtype
(
torch.dtype
, optional) the desired data type of returned tensor. Default: ifNULL
, uses a global default (seetorch_set_default_tensor_type
).- layout
(
torch.layout
, optional) the desired layout of returned Tensor. Default:torch_strided
.- device
(
torch.device
, optional) the desired device of returned tensor. Default: ifNULL
, uses the current device for the default tensor type (seetorch_set_default_tensor_type
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.- requires_grad
(bool, optional) If autograd should record operations on the returned tensor. Default:
FALSE
.
logspace(start, end, steps=100, base=10.0, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor
Returns a one-dimensional tensor of steps
points
logarithmically spaced with base base
between
\({\mbox{base}}^{\mbox{start}}\) and \({\mbox{base}}^{\mbox{end}}\).
The output tensor is 1-D of size steps
.
Examples
if (torch_is_installed()) {
torch_logspace(start=-10, end=10, steps=5)
torch_logspace(start=0.1, end=1.0, steps=5)
torch_logspace(start=0.1, end=1.0, steps=1)
torch_logspace(start=2, end=2, steps=1, base=2)
}
#> torch_tensor
#> 4
#> [ CPUFloatType{1} ]