Skip to contents

Applies the element-wise function: $$ \mbox{PReLU}(x) = \max(0,x) + a * \min(0,x) $$ or $$ \mbox{PReLU}(x) = \left\{ \begin{array}{ll} x, & \mbox{ if } x \geq 0 \\ ax, & \mbox{ otherwise } \end{array} \right. $$

Usage

nn_prelu(num_parameters = 1, init = 0.25)

Arguments

num_parameters

(int): number of \(a\) to learn. Although it takes an int as input, there is only two values are legitimate: 1, or the number of channels at input. Default: 1

init

(float): the initial value of \(a\). Default: 0.25

Details

Here \(a\) is a learnable parameter. When called without arguments, nn.prelu() uses a single parameter \(a\) across all input channels. If called with nn_prelu(nChannels), a separate \(a\) is used for each input channel.

Note

weight decay should not be used when learning \(a\) for good performance.

Channel dim is the 2nd dim of input. When input has dims < 2, then there is no channel dim and the number of channels = 1.

Shape

  • Input: \((N, *)\) where * means, any number of additional dimensions

  • Output: \((N, *)\), same shape as the input

Attributes

  • weight (Tensor): the learnable weights of shape (num_parameters).

Examples

if (torch_is_installed()) {
m <- nn_prelu()
input <- torch_randn(2)
output <- m(input)
}