Conv3d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv3d.Rd
Conv3d
Usage
torch_conv3d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
dilation = 1L,
groups = 1L
)
Arguments
- input
input tensor of shape \((\mbox{minibatch} , \mbox{in\_channels} , iT , iH , iW)\)
- weight
filters of shape \((\mbox{out\_channels} , \frac{\mbox{in\_channels}}{\mbox{groups}} , kT , kH , kW)\)
- bias
optional bias tensor of shape \((\mbox{out\_channels})\). Default: NULL
- stride
the stride of the convolving kernel. Can be a single number or a tuple
(sT, sH, sW)
. Default: 1- padding
implicit paddings on both sides of the input. Can be a single number or a tuple
(padT, padH, padW)
. Default: 0- dilation
the spacing between kernel elements. Can be a single number or a tuple
(dT, dH, dW)
. Default: 1- groups
split input into groups, \(\mbox{in\_channels}\) should be divisible by the number of groups. Default: 1
conv3d(input, weight, bias=NULL, stride=1, padding=0, dilation=1, groups=1) -> Tensor
Applies a 3D convolution over an input image composed of several input planes.
See nn_conv3d()
for details and output shape.
Examples
if (torch_is_installed()) {
# filters = torch_randn(c(33, 16, 3, 3, 3))
# inputs = torch_randn(c(20, 16, 50, 10, 20))
# nnf_conv3d(inputs, filters)
}
#> NULL