Applies a 3D max pooling over an input signal composed of several input planes.
Source:R/nn-pooling.R
nn_max_pool3d.Rd
In the simplest case, the output value of the layer with input size \((N, C, D, H, W)\),
output \((N, C, D_{out}, H_{out}, W_{out})\) and kernel_size
\((kD, kH, kW)\)
can be precisely described as:
Usage
nn_max_pool3d(
kernel_size,
stride = NULL,
padding = 0,
dilation = 1,
return_indices = FALSE,
ceil_mode = FALSE
)
Arguments
- kernel_size
the size of the window to take a max over
- stride
the stride of the window. Default value is
kernel_size
- padding
implicit zero padding to be added on all three sides
- dilation
a parameter that controls the stride of elements in the window
- return_indices
if
TRUE
, will return the max indices along with the outputs. Useful fortorch_nn.MaxUnpool3d
later- ceil_mode
when TRUE, will use
ceil
instead offloor
to compute the output shape
Details
$$ \begin{array}{ll} \mbox{out}(N_i, C_j, d, h, w) = & \max_{k=0, \ldots, kD-1} \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\ & \mbox{input}(N_i, C_j, \mbox{stride[0]} \times d + k, \mbox{stride[1]} \times h + m, \mbox{stride[2]} \times w + n) \end{array} $$
If padding
is non-zero, then the input is implicitly zero-padded on both sides
for padding
number of points. dilation
controls the spacing between the kernel points.
It is harder to describe, but this link
_ has a nice visualization of what dilation
does.
The parameters kernel_size
, stride
, padding
, dilation
can either be:
a single
int
-- in which case the same value is used for the depth, height and width dimensiona
tuple
of three ints -- in which case, the firstint
is used for the depth dimension, the secondint
for the height dimension and the thirdint
for the width dimension
Shape
Input: \((N, C, D_{in}, H_{in}, W_{in})\)
Output: \((N, C, D_{out}, H_{out}, W_{out})\), where $$ D_{out} = \left\lfloor\frac{D_{in} + 2 \times \mbox{padding}[0] - \mbox{dilation}[0] \times (\mbox{kernel\_size}[0] - 1) - 1}{\mbox{stride}[0]} + 1\right\rfloor $$
$$ H_{out} = \left\lfloor\frac{H_{in} + 2 \times \mbox{padding}[1] - \mbox{dilation}[1] \times (\mbox{kernel\_size}[1] - 1) - 1}{\mbox{stride}[1]} + 1\right\rfloor $$
$$ W_{out} = \left\lfloor\frac{W_{in} + 2 \times \mbox{padding}[2] - \mbox{dilation}[2] \times (\mbox{kernel\_size}[2] - 1) - 1}{\mbox{stride}[2]} + 1\right\rfloor $$
Examples
if (torch_is_installed()) {
# pool of square window of size=3, stride=2
m <- nn_max_pool3d(3, stride = 2)
# pool of non-square window
m <- nn_max_pool3d(c(3, 2, 2), stride = c(2, 1, 2))
input <- torch_randn(20, 16, 50, 44, 31)
output <- m(input)
}