Cat
Arguments
- tensors
(sequence of Tensors) any python sequence of tensors of the same type. Non-empty tensors provided must have the same shape, except in the cat dimension.
- dim
(int, optional) the dimension over which the tensors are concatenated
cat(tensors, dim=0, out=NULL) -> Tensor
Concatenates the given sequence of seq
tensors in the given dimension.
All tensors must either have the same shape (except in the concatenating
dimension) or be empty.
torch_cat
can be seen as an inverse operation for torch_split()
and torch_chunk
.
torch_cat
can be best understood via examples.
Examples
if (torch_is_installed()) {
x = torch_randn(c(2, 3))
x
torch_cat(list(x, x, x), 1)
torch_cat(list(x, x, x), 2)
}
#> torch_tensor
#> 0.3147 -0.6072 -1.1446 0.3147 -0.6072 -1.1446 0.3147 -0.6072 -1.1446
#> -0.2502 0.6148 0.3265 -0.2502 0.6148 0.3265 -0.2502 0.6148 0.3265
#> [ CPUFloatType{2,9} ]