Creates a criterion that measures the loss given
inputs Tensors
,
and a label 1D mini-batch tensor
Arguments
- margin
(float, optional): Has a default value of
.- reduction
(string, optional): Specifies the reduction to apply to the output:
'none'
|'mean'
|'sum'
.'none'
: no reduction will be applied,'mean'
: the sum of the output will be divided by the number of elements in the output,'sum'
: the output will be summed.
Shape
Input1:
whereN
is the batch size.Input2:
, same shape as the Input1.Target:
, same shape as the inputs.Output: scalar. If
reduction
is'none'
, then .
Examples
if (torch_is_installed()) {
loss <- nn_margin_ranking_loss()
input1 <- torch_randn(3, requires_grad = TRUE)
input2 <- torch_randn(3, requires_grad = TRUE)
target <- torch_randn(3)$sign()
output <- loss(input1, input2, target)
output$backward()
}