Squeeze

## Usage

torch_squeeze(self, dim)

## Arguments

self

(Tensor) the input tensor.

dim

(int, optional) if given, the input will be squeezed only in this dimension

## Note

The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other.

## squeeze(input, dim=NULL, out=NULL) -> Tensor

Returns a tensor with all the dimensions of input of size 1 removed.

For example, if input is of shape: $$(A \times 1 \times B \times C \times 1 \times D)$$ then the out tensor will be of shape: $$(A \times B \times C \times D)$$.

When dim is given, a squeeze operation is done only in the given dimension. If input is of shape: $$(A \times 1 \times B)$$, squeeze(input, 0) leaves the tensor unchanged, but squeeze(input, 1) will squeeze the tensor to the shape $$(A \times B)$$.

## Examples

if (torch_is_installed()) {

x = torch_zeros(c(2, 1, 2, 1, 2))
x
y = torch_squeeze(x)
y
y = torch_squeeze(x, 1)
y
y = torch_squeeze(x, 2)
y
}
#> torch_tensor
#> (1,1,.,.) =
#>   0  0
#>
#> (2,1,.,.) =
#>   0  0
#>
#> (1,2,.,.) =
#>   0  0
#>
#> (2,2,.,.) =
#>   0  0
#> [ CPUFloatType{2,2,1,2} ]