For further details regarding the algorithm we refer to Decoupled Weight Decay Regularization
Usage
optim_adamw(
  params,
  lr = 0.001,
  betas = c(0.9, 0.999),
  eps = 1e-08,
  weight_decay = 0.01,
  amsgrad = FALSE
)Arguments
- params
 (iterable): iterable of parameters to optimize or dicts defining parameter groups
- lr
 (float, optional): learning rate (default: 1e-3)
- betas
 (
Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))- eps
 (float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
- weight_decay
 (float, optional): weight decay (L2 penalty) (default: 0)
- amsgrad
 (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper On the Convergence of Adam and Beyond (default: FALSE)