Skip to contents

Applied element-wise, as:

Usage

nn_selu(inplace = FALSE)

Arguments

inplace

(bool, optional): can optionally do the operation in-place. Default: FALSE

Details

SELU(x)=scale(max(0,x)+min(0,α(exp(x)1)))

with α=1.6732632423543772848170429916717 and scale=1.0507009873554804934193349852946.

More details can be found in the paper Self-Normalizing Neural Networks.

Shape

  • Input: (N,) where * means, any number of additional dimensions

  • Output: (N,), same shape as the input

Examples

if (torch_is_installed()) {
m <- nn_selu()
input <- torch_randn(2)
output <- m(input)
}