Applies the element-wise function:
Details
Here nn.prelu()
uses a single
parameter nn_prelu(nChannels)
,
a separate
Note
weight decay should not be used when learning
Channel dim is the 2nd dim of input. When input has dims < 2, then there is no channel dim and the number of channels = 1.
Examples
if (torch_is_installed()) {
m <- nn_prelu()
input <- torch_randn(2)
output <- m(input)
}