Applies a 1D max pooling over an input signal composed of several input planes.
Usage
nn_max_pool1d(
kernel_size,
stride = NULL,
padding = 0,
dilation = 1,
return_indices = FALSE,
ceil_mode = FALSE
)
Arguments
- kernel_size
the size of the window to take a max over
- stride
the stride of the window. Default value is
kernel_size
- padding
implicit zero padding to be added on both sides
- dilation
a parameter that controls the stride of elements in the window
- return_indices
if
TRUE
, will return the max indices along with the outputs. Useful fornn_max_unpool1d()
later.- ceil_mode
when
TRUE
, will useceil
instead offloor
to compute the output shape
Details
In the simplest case, the output value of the layer with input size (N,C,L) and output (N,C,Lout) can be precisely described as:
out(Ni,Cj,k)=maxm=0,…,kernel\_size−1input(Ni,Cj,stride×k+m)
If padding
is non-zero, then the input is implicitly zero-padded on both sides
for padding
number of points. dilation
controls the spacing between the kernel points.
It is harder to describe, but this link
has a nice visualization of what dilation
does.
Shape
Input: (N,C,Lin)
Output: (N,C,Lout), where
Lout=⌊Lin+2×padding−dilation×(kernel\_size−1)−1stride+1⌋
Examples
if (torch_is_installed()) {
# pool of size=3, stride=2
m <- nn_max_pool1d(3, stride = 2)
input <- torch_randn(20, 16, 50)
output <- m(input)
}