Skip to contents

This does two things:

Usage

with_detect_anomaly(code)

Arguments

code

Code that will be executed in the detect anomaly context.

Details

  • Running the forward pass with detection enabled will allow the backward pass to print the traceback of the forward operation that created the failing backward function.

  • Any backward computation that generate "nan" value will raise an error.

Warning

This mode should be enabled only for debugging as the different tests will slow down your program execution.

Examples

if (torch_is_installed()) {
x <- torch_randn(2, requires_grad = TRUE)
y <- torch_randn(1)
b <- (x^y)$sum()
y$add_(1)

try({
  b$backward()

  with_detect_anomaly({
    b$backward()
  })
})
}
#> Error in (function (self, inputs, gradient, retain_graph, create_graph)  : 
#>   one of the variables needed for gradient computation has been modified by an inplace operation: [CPUFloatType [1]] is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
#> Exception raised from unpack at /Users/runner/work/libtorch-mac-m1/libtorch-mac-m1/pytorch/torch/csrc/autograd/saved_variable.cpp:193 (most recent call first):
#> frame #0: std::__1::shared_ptr<c10::(anonymous namespace)::PyTorchStyleBacktrace> std::__1::make_shared[abi:ue170006]<c10::(anonymous namespace)::PyTorchStyleBacktrace, c10::SourceLocation&, void>(c10::SourceLocation&) + 121 (0x10d889049 in libc10.dylib)
#> frame #1: c10::Error::Error(c10::SourceLocation, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>) + 54 (0x10d889186 in libc10.dylib)
#> frame #2: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>> const&) + 149 (0x10d885a45 in libc10.dylib)
#> frame #3: torch::autograd::SavedVariable::unpack(std::__1::shared_ptr<torch::autograd::Node>) const + 2149 (0x124c339e5 in libtorch_cpu.dylib)
#> frame #4: torch::autograd::generated::PowBackward1::apply(std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>>&&) + 66 (0x1239618e2 in libtorch_cpu.dylib)
#> frame #5: torch::autograd::Node::operator()(std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>>&&) + 104 (0x124bf9a88 in libtorch_cpu.dylib)
#> frame #6: torch::autograd::Engine::evaluate_function(std::__1::shared_ptr<torch::autograd::GraphTask>&, torch::autograd::Node*, torch::autograd::InputBuffer&, std::__1::shared_ptr<torch::autograd::ReadyQueue> const&) + 2899 (0x124bf0ff3 in libtorch_cpu.dylib)
#> frame #7: torch::autograd::Engine::thread_main(std::__1::shared_ptr<torch::autograd::GraphTask> const&) + 1140 (0x124befe74 in libtorch_cpu.dylib)
#> frame #8: torch::autograd::Engine::execute_with_graph_task(std::__1::shared_ptr<torch::autograd::GraphTask> const&, std::__1::shared_ptr<torch::autograd::Node>, torch::autograd::InputBuffer&&) + 535 (0x124bf8a37 in libtorch_cpu.dylib)
#> frame #9: torch::autograd::Engine::execute(std::__1::vector<torch::autograd::Edge, std::__1::allocator<torch::autograd::Edge>> const&, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, bool, bool, bool, std::__1::vector<torch::autograd::Edge, std::__1::allocator<torch::autograd::Edge>> const&) + 1834 (0x124bf747a in libtorch_cpu.dylib)
#> frame #10: torch::autograd::run_backward(std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, bool, bool, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, bool, bool) + 982 (0x124bdbc06 in libtorch_cpu.dylib)
#> frame #11: torch::autograd::backward(std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&, std::__1::optional<bool>, bool, std::__1::vector<at::Tensor, std::__1::allocator<at::Tensor>> const&) + 107 (0x124bdb10b in libtorch_cpu.dylib)
#> frame #12: torch::autograd::VariableHooks::_backward(at::Tensor const&, c10::ArrayRef<at::Tensor>, std::__1::optional<at::Tensor> const&, std::__1::optional<bool>, bool) const + 296 (0x124c38c08 in libtorch_cpu.dylib)
#> frame #13: at::Tensor::_backward(c10::ArrayRef<at::Tensor>, std::__1::optional<at::Tensor> const&, std::__1::optional<bool>, bool) const + 73 (0x1206792d9 in libtorch_cpu.dylib)
#> frame #14: _lantern_Tensor__backward_tensor_tensorlist_tensor_bool_bool + 211 (0x110b6ffd3 in liblantern.dylib)
#> frame #15: std::__1::__function::__func<cpp_torch_method__backward_self_Tensor_inputs_TensorList(XPtrTorchTensor, XPtrTorchTensorList, XPtrTorchOptionalTensor, XPtrTorchoptional_bool, XPtrTorchbool)::$_2, std::__1::allocator<cpp_torch_method__backward_self_Tensor_inputs_TensorList(XPtrTorchTensor, XPtrTorchTensorList, XPtrTorchOptionalTensor, XPtrTorchoptional_bool, XPtrTorchbool)::$_2>, void ()>::operator()() + 54 (0x10f389ab6 in torchpkg.so)
#> frame #16: std::__1::packaged_task<void ()>::operator()() + 72 (0x10f387b88 in torchpkg.so)
#> frame #17: EventLoop<void>::run() + 413 (0x10f3879dd in torchpkg.so)
#> frame #18: void* std::__1::__thread_proxy[abi:v160006]<std::__1::tuple<std::__1::unique_ptr<std::__1::__thread_struct, std::__1::default_delete<std::__1::__thread_struct>>, ThreadPool<void>::ThreadPool(int)::'lambda'()>>(void*) + 50 (0x10f387732 in torchpkg.so)
#> frame #19: _pthread_start + 125 (0x7ff813baa1d3 in libsystem_pthread.dylib)
#> frame #20: thread_start + 15 (0x7ff813ba5bd3 in libsystem_pthread.dylib)
#>