Conv_transpose1d
Source:R/gen-namespace-docs.R
, R/gen-namespace-examples.R
, R/gen-namespace.R
torch_conv_transpose1d.Rd
Conv_transpose1d
Usage
torch_conv_transpose1d(
input,
weight,
bias = list(),
stride = 1L,
padding = 0L,
output_padding = 0L,
groups = 1L,
dilation = 1L
)
Arguments
- input
input tensor of shape
- weight
filters of shape
- bias
optional bias of shape
. Default: NULL- stride
the stride of the convolving kernel. Can be a single number or a tuple
(sW,)
. Default: 1- padding
dilation * (kernel_size - 1) - padding
zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple(padW,)
. Default: 0- output_padding
additional size added to one side of each dimension in the output shape. Can be a single number or a tuple
(out_padW)
. Default: 0- groups
split input into groups,
should be divisible by the number of groups. Default: 1- dilation
the spacing between kernel elements. Can be a single number or a tuple
(dW,)
. Default: 1
conv_transpose1d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
Applies a 1D transposed convolution operator over an input signal composed of several input planes, sometimes also called "deconvolution".
See nn_conv_transpose1d()
for details and output shape.
Examples
if (torch_is_installed()) {
inputs = torch_randn(c(20, 16, 50))
weights = torch_randn(c(16, 33, 5))
nnf_conv_transpose1d(inputs, weights)
}
#> torch_tensor
#> (1,.,.) =
#> Columns 1 to 6 2.1065e+00 4.2545e+00 -7.2812e+00 9.3095e+00 -1.1119e+01 6.0161e+00
#> -3.4632e+00 1.2377e+01 1.2267e+00 -7.7795e+00 2.7676e+00 -1.3448e+00
#> 2.5015e+00 3.7745e+00 7.2036e+00 3.1809e+00 -8.9164e+00 2.0263e+00
#> -6.8297e+00 -8.7407e+00 -1.3858e+01 1.0621e+01 1.3752e+01 -3.5345e-01
#> 1.3619e+00 6.3470e+00 9.5993e+00 3.4359e+00 4.7840e+00 4.3021e+00
#> -5.3539e-01 -5.2455e+00 2.1651e+00 2.6303e-01 5.7846e+00 1.5671e+01
#> 3.8814e+00 8.5034e+00 -3.0298e+00 -7.5409e+00 -2.0862e+00 -1.2639e+01
#> 8.3029e+00 -4.9851e+00 1.4344e+01 1.1211e+01 9.6320e+00 -1.1655e+01
#> -5.3246e+00 5.5726e+00 6.9331e+00 -1.5614e+00 -2.5315e+00 5.3770e+00
#> -2.8534e+00 -4.8446e+00 8.2376e+00 5.3437e+00 1.4911e+01 4.6172e+00
#> -1.4600e+00 -2.7250e-01 -5.8968e+00 -1.7803e+00 1.5687e+01 1.4063e+01
#> 5.5213e+00 5.8617e+00 1.5800e+01 -6.7872e-01 4.7496e+00 1.0845e+01
#> -5.2515e+00 -9.4890e+00 -2.2794e+00 1.2049e+01 4.7434e+00 2.3950e+00
#> 2.0024e+00 1.7202e+00 -8.8798e+00 8.6475e+00 -1.1650e+01 -1.6203e+01
#> 7.5844e+00 -5.4997e-01 -1.2895e+01 6.3570e+00 -2.8748e-01 8.4130e+00
#> -5.3229e+00 1.0014e+01 -2.2845e+00 1.7580e+00 -4.5975e+00 -1.0274e+01
#> 5.6174e+00 -3.0126e-01 -3.3910e+00 -1.1294e+01 -5.6563e+00 -6.7511e+00
#> -4.3260e+00 2.7836e+00 -2.3220e+00 5.3535e+00 3.2402e+00 2.0657e+01
#> 6.2748e+00 2.9895e+00 1.2423e+00 -2.6458e+00 4.8733e+00 8.7331e-01
#> -4.0596e+00 1.2340e+01 -2.1270e+01 4.7890e+00 -7.7019e+00 1.4417e+01
#> 7.4039e+00 3.1946e+00 -1.2608e+01 -1.2005e+01 -2.6921e+00 1.1020e+01
#> -2.7700e+00 -3.6290e+00 -5.0030e+00 4.4270e+00 -6.5011e+00 5.2694e+00
#> -7.9219e+00 -6.8214e+00 -1.1008e+01 -2.2366e+00 7.5697e-01 -8.6133e-01
#> 5.8025e+00 -1.4334e-01 -1.0507e+01 -2.8326e+00 -8.1040e+00 7.3243e+00
#> -3.1109e+00 1.8539e+00 -1.8897e-01 4.6636e+00 1.3963e+01 -4.2291e+00
#> 4.2664e+00 -3.4181e+00 -1.1691e+01 8.1366e+00 6.8679e-01 -8.4025e+00
#> 4.5487e-01 2.2341e+00 -5.8664e+00 6.4070e+00 -7.9101e+00 9.7662e+00
#> -9.4078e-01 -2.6026e+00 -4.4460e+00 1.5725e+00 -5.2829e+00 -7.5777e+00
#> 1.7187e+00 1.8971e+00 1.6945e+00 7.0668e+00 -9.6171e+00 6.7587e+00
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{20,33,54} ]