Bmm
Note
This function does not broadcast .
For broadcasting matrix products, see torch_matmul
.
bmm(input, mat2, out=NULL) -> Tensor
Performs a batch matrix-matrix product of matrices stored in input
and mat2
.
input
and mat2
must be 3-D tensors each containing
the same number of matrices.
If input
is a mat2
is a
out
will be a
Examples
if (torch_is_installed()) {
input = torch_randn(c(10, 3, 4))
mat2 = torch_randn(c(10, 4, 5))
res = torch_bmm(input, mat2)
res
}
#> torch_tensor
#> (1,.,.) =
#> 0.9501 -2.1371 1.9676 3.0700 0.4077
#> -1.4499 -1.4446 2.4942 -0.6344 2.2255
#> -0.6433 -0.1672 -1.1785 -0.6782 0.3128
#>
#> (2,.,.) =
#> 2.0348 -2.2606 2.4080 -0.6820 0.3326
#> 3.0801 0.0414 2.1451 -0.1846 -0.2773
#> -2.0642 1.0676 -1.1299 -0.0173 0.0166
#>
#> (3,.,.) =
#> -1.4207 1.5816 -0.8085 -1.1405 -0.2784
#> -1.0228 3.0545 -0.1846 -1.6912 1.4710
#> 1.0635 0.4789 -1.1840 -0.7035 -0.7093
#>
#> (4,.,.) =
#> 0.7499 -2.0121 1.1876 -0.4341 0.6876
#> -1.2348 3.6392 -0.8906 2.1019 -1.4382
#> -3.7749 5.3829 -2.3838 -0.0100 -2.8686
#>
#> (5,.,.) =
#> 0.2522 -1.6028 0.5622 1.0670 0.1879
#> -0.4224 -3.3732 0.7758 2.1540 -0.8548
#> 0.3720 -4.2180 1.6636 0.1477 -1.0113
#>
#> (6,.,.) =
#> 5.0343 -5.1844 -0.2810 5.2303 0.6995
#> 3.2519 1.0542 -2.1754 1.2397 -0.1884
#> -6.3572 1.7436 1.6122 -7.6951 -3.0094
#>
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{10,3,5} ]