Randn
Usage
torch_randn(
...,
names = NULL,
dtype = NULL,
layout = NULL,
device = NULL,
requires_grad = FALSE
)
Arguments
- ...
(int...) a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
- names
optional names for the dimensions
- dtype
(
torch.dtype
, optional) the desired data type of returned tensor. Default: ifNULL
, uses a global default (seetorch_set_default_tensor_type
).- layout
(
torch.layout
, optional) the desired layout of returned Tensor. Default:torch_strided
.- device
(
torch.device
, optional) the desired device of returned tensor. Default: ifNULL
, uses the current device for the default tensor type (seetorch_set_default_tensor_type
).device
will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.- requires_grad
(bool, optional) If autograd should record operations on the returned tensor. Default:
FALSE
.
randn(*size, out=NULL, dtype=NULL, layout=torch.strided, device=NULL, requires_grad=False) -> Tensor
Returns a tensor filled with random numbers from a normal distribution
with mean 0
and variance 1
(also called the standard normal
distribution).
$$
\mbox{out}_{i} \sim \mathcal{N}(0, 1)
$$
The shape of the tensor is defined by the variable argument size
.
Examples
if (torch_is_installed()) {
torch_randn(c(4))
torch_randn(c(2, 3))
}
#> torch_tensor
#> -0.8321 0.3774 -1.2515
#> 1.1037 2.6689 0.0240
#> [ CPUFloatType{2,3} ]